simdna 1.0.0

High-performance SIMD-accelerated DNA sequence encoding supporting all IUPAC nucleotide codes
Documentation

High-performance DNA/RNA sequence encoding and decoding using SIMD instructions with automatic fallback to scalar implementations.

Crates.io Docs.rs License: MIT

Table of Contents

Features

  • 4-bit encoding supporting all IUPAC nucleotide codes (16 standard + U for RNA)
  • SIMD acceleration on x86_64 (SSSE3) and ARM64 (NEON)
  • Automatic fallback to optimized scalar implementation
  • Thread-safe pure functions with no global state
  • 2:1 compression ratio compared to ASCII representation
  • RNA support via U (Uracil) mapping to T

Installation

Add simdna to your Cargo.toml:

[dependencies]
simdna = "1.0"

Or install via cargo:

cargo add simdna

IUPAC Nucleotide Codes

simdna supports the complete IUPAC nucleotide alphabet:

Standard Nucleotides

Code Meaning Value
A Adenine 0x0
C Cytosine 0x1
G Guanine 0x2
T Thymine 0x3
U Uracil (RNA → T) 0x3

Two-Base Ambiguity Codes

Code Meaning Value
R A or G (purine) 0x4
Y C or T (pyrimidine) 0x5
S G or C (strong) 0x6
W A or T (weak) 0x7
K G or T (keto) 0x8
M A or C (amino) 0x9

Three-Base Ambiguity Codes

Code Meaning Value
B C, G, or T (not A) 0xA
D A, G, or T (not C) 0xB
H A, C, or T (not G) 0xC
V A, C, or G (not T) 0xD

Wildcards and Gaps

Code Meaning Value
N Any base 0xE
- Gap / deletion 0xF
. Gap (alternative) 0xF

Usage

use simdna::dna_simd_encoder::{encode_dna_prefer_simd, decode_dna_prefer_simd};

// Encode a DNA sequence with IUPAC codes
let sequence = b"ACGTNRYSWKMBDHV-";
let encoded = encode_dna_prefer_simd(sequence);

// The encoded data is 2x smaller (2 nucleotides per byte)
assert_eq!(encoded.len(), sequence.len() / 2);

// Decode back to the original sequence
let decoded = decode_dna_prefer_simd(&encoded, sequence.len());
assert_eq!(decoded, sequence);

// RNA sequences work seamlessly (U maps to T)
let rna = b"ACGU";
let encoded_rna = encode_dna_prefer_simd(rna);
let decoded_rna = decode_dna_prefer_simd(&encoded_rna, rna.len());
assert_eq!(decoded_rna, b"ACGT"); // U decodes as T

Input Handling

  • Case insensitive: Both "ACGT" and "acgt" encode identically
  • Invalid characters: Non-IUPAC characters (X, digits, etc.) encode as gap (0xF)
  • Decoding: Always produces uppercase nucleotides

Integration

simdna focuses exclusively on high-performance encoding/decoding, making it composable with any FASTA/FASTQ parser or custom format. This keeps the library lightweight and lets you choose the tools that fit your workflow.

Working with seq_io

seq_io is a fast FASTA/FASTQ parser. simdna works directly with its borrowed sequence data:

use seq_io::fasta::Reader;
use simdna::dna_simd_encoder::encode_dna_prefer_simd;

let mut reader = Reader::from_path("genome.fasta")?;
while let Some(record) = reader.next() {
    let record = record?;
    // seq_io provides &[u8] directly - no allocation needed
    let encoded = encode_dna_prefer_simd(record.seq());
    // ... use encoded data
}

Working with noodles

noodles is a comprehensive bioinformatics I/O library:

use noodles::fasta;
use simdna::dna_simd_encoder::encode_dna_prefer_simd;

let mut reader = fasta::io::reader::Builder::default().build_from_path("genome.fasta")?;
for result in reader.records() {
    let record = result?;
    let encoded = encode_dna_prefer_simd(record.sequence().as_ref());
    // ... use encoded data
}

Working with rust-bio

rust-bio provides algorithms and data structures for bioinformatics:

use bio::io::fasta;
use simdna::dna_simd_encoder::encode_dna_prefer_simd;

let reader = fasta::Reader::from_file("genome.fasta")?;
for result in reader.records() {
    let record = result?;
    let encoded = encode_dna_prefer_simd(record.seq());
    // ... use encoded data
}

Zero-Copy Integration

simdna accepts &[u8] slices, enabling zero-copy integration with parsers. Avoid unnecessary allocations:

// ✓ Good: Work directly with borrowed data
let encoded = encode_dna_prefer_simd(record.seq());

// ✗ Avoid: Unnecessary allocation
let owned: Vec<u8> = record.seq().to_vec();
let encoded = encode_dna_prefer_simd(&owned);

Most FASTA/FASTQ parsers provide sequence data as &[u8] or types that implement AsRef<[u8]>, which work directly with simdna's API.

Platform Support

Platform SIMD Fallback
x86_64 SSSE3 Scalar
ARM64 NEON Scalar
Other - Scalar

Performance

  • SIMD processes 16 nucleotides per iteration
  • 2:1 compression ratio (4 bits per nucleotide vs 8 bits ASCII)
  • Expected speedup: 4-8x over scalar code on modern CPUs

DNA Encoding/Decoding Throughput

Benchmarks obtained on a Mac Studio with 32GB RAM and Apple M1 Max chip running macOS Tahoe 26.1 using the Criterion.rs statistics-driven micro-benchmarking library.

Testing

simdna employs a comprehensive testing strategy to ensure correctness and robustness:

Unit Tests

Run the standard test suite with:

cargo test

The unit tests cover:

  • Encoding and decoding of all IUPAC nucleotide codes
  • Case insensitivity handling
  • Invalid character handling
  • Odd and even length sequences
  • Empty input edge cases
  • SIMD and scalar implementation equivalence

Fuzz Testing

simdna uses cargo-fuzz for property-based fuzz testing to discover edge cases and potential bugs. The following fuzz targets are available:

Target Description
roundtrip Verifies encode→decode produces consistent output
valid_iupac Tests encoding of valid IUPAC sequences
decode_robust Tests decoder resilience to arbitrary byte sequences
boundaries Tests sequence length boundary conditions
simd_scalar_equivalence Verifies SIMD and scalar implementations produce identical results

Run fuzz tests with:

cargo +nightly fuzz run <target> -- -max_total_time=60

Contributing

Contributions are welcome! Please see CONTRIBUTING.md for guidelines on bug reports and feature requests.

Changelog

See CHANGELOG.md for a history of changes to this project.

Citation

If you use simdna in your research, please cite it using the metadata in CITATION.cff. GitHub can also generate citation information directly from the repository page.

License

This project is licensed under the MIT License - see LICENSE for details.