1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
use core::fmt::Debug;
use core::ops::{Deref, DerefMut, Index, IndexMut};
use core::ptr::NonNull;
use core::{mem, ptr};

use crate::alloc::{AllocError, Allocator, Global};
use crate::raw::{BufferSize, HeaderBuffer};
use crate::vector::{Vector, RawVector};
use crate::{grow_amortized, AtomicRefCount, DefaultRefCount, RefCount};

/// A heap allocated, atomically reference counted, immutable contiguous buffer containing elements of type `T`.
///
/// <svg width="280" height="120" viewBox="0 0 74.08 31.75" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/2000/svg"><defs><linearGradient id="a"><stop offset="0" stop-color="#491c9c"/><stop offset="1" stop-color="#d54b27"/></linearGradient><linearGradient xlink:href="#a" id="b" gradientUnits="userSpaceOnUse" x1="6.27" y1="34.86" x2="87.72" y2="13.24" gradientTransform="translate(-2.64 -18.48)"/></defs><rect width="10.57" height="10.66" x="2.66" y="18.48" ry="1.37" fill="#3dbdaa"/><rect width="10.57" height="10.66" x="15.88" y="18.52" ry="1.37" fill="#3dbdaa"/><rect width="10.57" height="10.66" x="29.11" y="18.52" ry="1.37" fill="#3dbdaa"/><circle cx="33.87" cy="18.56" r=".79" fill="#666"/><circle cx="7.41" cy="18.56" r=".79" fill="#666"/><circle cx="20.64" cy="18.56" r=".79" fill="#666"/><path d="M7.38 18.54c.03-2.63-3.41-2.66-3.41-5.31" fill="none" stroke="#999" stroke-width=".86" stroke-linecap="round"/><path d="M20.64 18.56c0-2.91-15.35-1.36-15.35-5.33" fill="none" stroke="#999" stroke-width=".86" stroke-linecap="round"/><path d="M33.87 18.56c0-3.97-27.26-2.68-27.26-5.33" fill="none" stroke="#999" stroke-width=".86" stroke-linecap="round"/><rect width="68.79" height="10.58" x="2.65" y="2.68" ry="1.37" fill="url(#b)"/><rect width="15.35" height="9.51" x="3.18" y="3.21" ry=".9" fill="#78a2d4"/><rect width="9.26" height="9.51" x="19.85" y="3.2" ry=".9" fill="#eaa577"/><rect width="9.26" height="9.51" x="29.64" y="3.22" ry=".9" fill="#eaa577"/><rect width="9.26" height="9.51" x="39.43" y="3.22" ry=".9" fill="#eaa577"/><rect width="9.26" height="9.51" x="49.22" y="3.21" ry=".9" fill="#eaa577"/><circle cx="62.84" cy="7.97" r=".66" fill="#eaa577"/><circle cx="64.7" cy="7.97" r=".66" fill="#eaa577"/><circle cx="66.55" cy="7.97" r=".66" fill="#eaa577"/></svg>
///
/// See [RefCountedVector].
pub type AtomicSharedVector<T, A = Global> = RefCountedVector<T, AtomicRefCount, A>;

/// A heap allocated, reference counted, immutable contiguous buffer containing elements of type `T`.
///
/// <svg width="280" height="120" viewBox="0 0 74.08 31.75" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/2000/svg"><defs><linearGradient id="a"><stop offset="0" stop-color="#491c9c"/><stop offset="1" stop-color="#d54b27"/></linearGradient><linearGradient xlink:href="#a" id="b" gradientUnits="userSpaceOnUse" x1="6.27" y1="34.86" x2="87.72" y2="13.24" gradientTransform="translate(-2.64 -18.48)"/></defs><rect width="10.57" height="10.66" x="2.66" y="18.48" ry="1.37" fill="#3dbdaa"/><rect width="10.57" height="10.66" x="15.88" y="18.52" ry="1.37" fill="#3dbdaa"/><rect width="10.57" height="10.66" x="29.11" y="18.52" ry="1.37" fill="#3dbdaa"/><circle cx="33.87" cy="18.56" r=".79" fill="#666"/><circle cx="7.41" cy="18.56" r=".79" fill="#666"/><circle cx="20.64" cy="18.56" r=".79" fill="#666"/><path d="M7.38 18.54c.03-2.63-3.41-2.66-3.41-5.31" fill="none" stroke="#999" stroke-width=".86" stroke-linecap="round"/><path d="M20.64 18.56c0-2.91-15.35-1.36-15.35-5.33" fill="none" stroke="#999" stroke-width=".86" stroke-linecap="round"/><path d="M33.87 18.56c0-3.97-27.26-2.68-27.26-5.33" fill="none" stroke="#999" stroke-width=".86" stroke-linecap="round"/><rect width="68.79" height="10.58" x="2.65" y="2.68" ry="1.37" fill="url(#b)"/><rect width="15.35" height="9.51" x="3.18" y="3.21" ry=".9" fill="#78a2d4"/><rect width="9.26" height="9.51" x="19.85" y="3.2" ry=".9" fill="#eaa577"/><rect width="9.26" height="9.51" x="29.64" y="3.22" ry=".9" fill="#eaa577"/><rect width="9.26" height="9.51" x="39.43" y="3.22" ry=".9" fill="#eaa577"/><rect width="9.26" height="9.51" x="49.22" y="3.21" ry=".9" fill="#eaa577"/><circle cx="62.84" cy="7.97" r=".66" fill="#eaa577"/><circle cx="64.7" cy="7.97" r=".66" fill="#eaa577"/><circle cx="66.55" cy="7.97" r=".66" fill="#eaa577"/></svg>
///
/// See [RefCountedVector].
pub type SharedVector<T, A = Global> = RefCountedVector<T, DefaultRefCount, A>;

/// A heap allocated, reference counted, immutable contiguous buffer containing elements of type `T`.
///
/// <svg width="280" height="120" viewBox="0 0 74.08 31.75" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/2000/svg"><defs><linearGradient id="a"><stop offset="0" stop-color="#491c9c"/><stop offset="1" stop-color="#d54b27"/></linearGradient><linearGradient xlink:href="#a" id="b" gradientUnits="userSpaceOnUse" x1="6.27" y1="34.86" x2="87.72" y2="13.24" gradientTransform="translate(-2.64 -18.48)"/></defs><rect width="10.57" height="10.66" x="2.66" y="18.48" ry="1.37" fill="#3dbdaa"/><rect width="10.57" height="10.66" x="15.88" y="18.52" ry="1.37" fill="#3dbdaa"/><rect width="10.57" height="10.66" x="29.11" y="18.52" ry="1.37" fill="#3dbdaa"/><circle cx="33.87" cy="18.56" r=".79" fill="#666"/><circle cx="7.41" cy="18.56" r=".79" fill="#666"/><circle cx="20.64" cy="18.56" r=".79" fill="#666"/><path d="M7.38 18.54c.03-2.63-3.41-2.66-3.41-5.31" fill="none" stroke="#999" stroke-width=".86" stroke-linecap="round"/><path d="M20.64 18.56c0-2.91-15.35-1.36-15.35-5.33" fill="none" stroke="#999" stroke-width=".86" stroke-linecap="round"/><path d="M33.87 18.56c0-3.97-27.26-2.68-27.26-5.33" fill="none" stroke="#999" stroke-width=".86" stroke-linecap="round"/><rect width="68.79" height="10.58" x="2.65" y="2.68" ry="1.37" fill="url(#b)"/><rect width="15.35" height="9.51" x="3.18" y="3.21" ry=".9" fill="#78a2d4"/><rect width="9.26" height="9.51" x="19.85" y="3.2" ry=".9" fill="#eaa577"/><rect width="9.26" height="9.51" x="29.64" y="3.22" ry=".9" fill="#eaa577"/><rect width="9.26" height="9.51" x="39.43" y="3.22" ry=".9" fill="#eaa577"/><rect width="9.26" height="9.51" x="49.22" y="3.21" ry=".9" fill="#eaa577"/><circle cx="62.84" cy="7.97" r=".66" fill="#eaa577"/><circle cx="64.7" cy="7.97" r=".66" fill="#eaa577"/><circle cx="66.55" cy="7.97" r=".66" fill="#eaa577"/></svg>
///
/// Similar in principle to `Arc<[T]>`. It can be converted into a `Vector<T>` for
/// free if there is only a single reference to the RefCountedVector alive.
///
/// # Copy-on-write "Immutable" vectors
///
/// This type contains mutable methods like `push` and `pop`. These internally allocate a new buffer
/// if the buffer is not unique (there are more than one reference to it). When there is a single reference,
/// these mutable operation simply update the existing buffer.
///
/// In other words, this type behaves like an [immutable (or persistent) data structure](https://en.wikipedia.org/wiki/Persistent_data_structure)
/// Actual mutability only happens under the hood as an optimization when a single reference exists.
#[repr(transparent)]
pub struct RefCountedVector<T, R: RefCount, A: Allocator = Global> {
    pub(crate) inner: HeaderBuffer<T, R, A>,
}

impl<T, R: RefCount> RefCountedVector<T, R, Global> {
    /// Creates an empty shared buffer without allocating memory.
    #[inline]
    pub fn new() -> RefCountedVector<T, R, Global> {
        RefCountedVector {
            inner: HeaderBuffer::try_with_capacity(0, Global).unwrap(),
        }
    }

    /// Constructs a new, empty vector with at least the specified capacity.
    #[inline]
    pub fn with_capacity(cap: usize) -> RefCountedVector<T, R, Global> {
        RefCountedVector {
            inner: HeaderBuffer::try_with_capacity(cap, Global).unwrap(),
        }
    }

    /// Clones the contents of a slice into a new vector.
    #[inline]
    pub fn from_slice(data: &[T]) -> RefCountedVector<T, R, Global>
    where
        T: Clone,
    {
        RefCountedVector {
            inner: HeaderBuffer::try_from_slice(data, None, Global).unwrap(),
        }
    }
}

impl<T, R: RefCount, A: Allocator> RefCountedVector<T, R, A> {
    /// Creates an empty vector without allocating memory.
    pub fn new_in(allocator: A) -> Self {
        Self::try_with_capacity_in(0, allocator).unwrap()
    }

    /// Creates an empty pre-allocated vector with a given storage capacity.
    pub fn with_capacity_in(cap: usize, allocator: A) -> Self {
        Self::try_with_capacity_in(cap, allocator).unwrap()
    }

    /// Tries to construct a new, empty vector with at least the specified capacity.
    #[inline]
    pub fn try_with_capacity_in(cap: usize, allocator: A) -> Result<Self, AllocError> {
        Ok(RefCountedVector {
            inner: HeaderBuffer::try_with_capacity(cap, allocator)?,
        })
    }

    /// Returns `true` if the vector contains no elements.
    #[inline]
    pub fn is_empty(&self) -> bool {
        self.inner.is_empty()
    }

    /// Returns the number of elements in the vector, also referred to as its ‘length’.
    #[inline]
    pub fn len(&self) -> usize {
        self.inner.len() as usize
    }

    /// Returns the total number of elements the vector can hold without reallocating.
    #[inline]
    pub fn capacity(&self) -> usize {
        self.inner.capacity() as usize
    }

    /// Returns number of elements that can be added without reallocating.
    #[inline]
    pub fn remaining_capacity(&self) -> usize {
        self.inner.remaining_capacity() as usize
    }

    /// Returns a reference to the underlying allocator.
    pub fn allocator(&self) -> &A {
        self.inner.allocator()
    }

    /// Creates a new reference without allocating.
    ///
    /// Equivalent to `Clone::clone`.
    #[inline]
    pub fn new_ref(&self) -> Self {
        RefCountedVector {
            inner: self.inner.new_ref(),
        }
    }

    /// Extracts a slice containing the entire vector.
    #[inline]
    pub fn as_slice(&self) -> &[T] {
        self.inner.as_slice()
    }

    /// Returns true if this is the only existing handle to the buffer.
    ///
    /// When this function returns true, mutable methods and converting to a `Vector`
    /// is very fast (does not involve additional memory allocations or copies).
    #[inline]
    pub fn is_unique(&self) -> bool {
        self.inner.is_unique()
    }

    /// Clears the vector, removing all values.
    pub fn clear(&mut self)
    where
        A: Clone,
    {
        if self.is_unique() {
            unsafe {
                self.inner.clear();
            }
            return;
        }

        *self =
            Self::try_with_capacity_in(self.capacity(), self.inner.allocator().clone()).unwrap();
    }

    /// Returns true if the two vectors share the same underlying storage.
    pub fn ptr_eq(&self, other: &Self) -> bool {
        self.inner.ptr_eq(&other.inner)
    }

    /// Allocates a duplicate of this buffer (infallible).
    pub fn copy_buffer(&self) -> Self
    where
        T: Copy,
        A: Clone,
    {
        RefCountedVector {
            inner: self.inner.try_copy_buffer(None).unwrap(),
        }
    }

    /// Tries to allocate a duplicate of this buffer.
    pub fn try_copy_buffer(&self) -> Result<Self, AllocError>
    where
        T: Copy,
        A: Clone,
    {
        Ok(RefCountedVector {
            inner: self.inner.try_copy_buffer(None)?,
        })
    }


    #[allow(unused)]
    pub(crate) fn addr(&self) -> *const u8 {
        self.inner.header.as_ptr() as *const u8
    }
}

/// Mutable methods that can cause the vector to be cloned and therefore require both the items and
/// the allocator to be cloneable.
impl<T: Clone, R: RefCount, A: Allocator + Clone> RefCountedVector<T, R, A> {
    /// Converts this RefCountedVector into an immutable one, allocating a new copy if there are other references.
    #[inline]
    pub fn into_unique(mut self) -> Vector<T, A> {
        self.ensure_unique();

        unsafe {
            let data = NonNull::new_unchecked(self.inner.data_ptr());
            let len = self.len() as BufferSize;
            let cap = self.capacity() as BufferSize;
            let allocator = self.inner.header.as_ref().allocator.clone();

            mem::forget(self);

            Vector {
                raw: RawVector {
                    data,
                    len,
                    cap,
                },
                allocator,
            }
        }
    }

    /// Appends an element to the back of a collection.
    ///
    /// # Panics
    ///
    /// Panics if the new capacity exceeds `u32::MAX` bytes.
    pub fn push(&mut self, val: T) {
        self.reserve(1);
        unsafe {
            self.inner.push(val);
        }
    }

    /// Removes the last element from the vector and returns it, or `None` if it is empty.
    pub fn pop(&mut self) -> Option<T> {
        self.ensure_unique();
        unsafe { self.inner.pop() }
    }

    /// Removes an element from the vector and returns it.
    ///
    /// The removed element is replaced by the last element of the vector.
    ///
    /// # Panics
    ///
    /// Panics if index is out of bounds.
    #[inline]
    pub fn swap_remove(&mut self, idx: usize) -> T {
        self.ensure_unique();

        let len = self.len();
        assert!(idx < len);

        unsafe {
            let ptr = self.inner.data_ptr().add(idx);
            let item = ptr::read(ptr);

            let last_idx = len - 1;
            if idx != last_idx {
                let last_ptr = self.inner.data_ptr().add(last_idx);
                ptr::write(ptr, ptr::read(last_ptr));
            }

            self.inner.set_len(last_idx as BufferSize);

            item
        }
    }

    /// Appends an element if there is sufficient spare capacity, otherwise an error is returned
    /// with the element.
    ///
    /// Like other mutable operations, this method may reallocate if the vector is not unique.
    /// Hopwever it will not reallocate when there’s insufficient capacity.
    /// The caller should use reserve or try_reserve to ensure that there is enough capacity.
    pub fn push_within_capacity(&mut self, val: T) -> Result<(), T> {
        if self.remaining_capacity() == 0 {
            return Err(val);
        }

        self.ensure_unique();
        unsafe {
            self.inner.push(val);
        }

        Ok(())
    }

    /// Clones and appends the contents of the slice to the back of a collection.
    pub fn extend_from_slice(&mut self, data: &[T]) {
        self.reserve(data.len());
        unsafe {
            self.inner.try_extend_from_slice(data).unwrap();
        }
    }

    /// Appends the contents of an iterator to the back of a collection.
    pub fn extend(&mut self, data: impl IntoIterator<Item = T>) {
        let mut iter = data.into_iter();
        let (min, max) = iter.size_hint();
        self.reserve(max.unwrap_or(min));
        unsafe {
            self.inner.try_extend(&mut iter).unwrap();
        }
    }

    /// Ensures this shared vector uniquely owns its storage, allocating a new copy
    /// If there are other references to it.
    ///
    /// In principle this is mostly useful internally to provide safe mutable methods
    /// as it does not observaly affect most of the shared vector behavior, however
    /// it has a few niche use cases, for example to provoke copies earlier for more
    /// predictable performance or in some unsafe endeavors.
    #[inline]
    pub fn ensure_unique(&mut self) {
        if !self.is_unique() {
            self.inner = self.inner.try_clone_buffer(None).unwrap();
        }
    }

    /// Extracts a mutable slice containing the entire vector.
    ///
    /// Like other mutable methods, this will clone the vector's storage
    /// if it is not unique to ensure safe mutations.
    #[inline]
    pub fn as_mut_slice(&mut self) -> &mut [T]
    where
        T: Clone,
        A: Clone,
    {
        self.ensure_unique();
        self.inner.as_mut_slice()
    }

    /// Allocates a duplicate of this buffer (infallible).
    pub fn clone_buffer(&self) -> Self
    where
        T: Clone,
        A: Clone,
    {
        RefCountedVector {
            inner: self.inner.try_clone_buffer(None).unwrap(),
        }
    }

    /// Ensures the vector can be safely mutated and has enough extra capacity to
    /// add `additional` more items.
    ///
    /// This will allocate new storage for the vector if the vector is not unique or if
    /// the capacity is not sufficient to accomodate `self.len() + additional` items.
    /// The vector may reserve more space to speculatively avoid frequent reallocations.
    #[inline]
    pub fn reserve(&mut self, additional: usize) {
        let is_unique = self.is_unique();
        let enough_capacity = self.remaining_capacity() >= additional;

        if !is_unique || !enough_capacity {
            // Hopefully the least common case.
            self.try_realloc_additional(is_unique, enough_capacity, additional)
                .unwrap();
        }
    }

    /// Tries to reserve at least `additional` extra elements to be inserted in the given vector.
    ///
    /// The vector may reserve more space to speculatively avoid frequent reallocations.
    /// After calling try_reserve, capacity will be greater than or equal to `self.len() + additional`
    /// if it returns `Ok(())`.
    /// Does nothing if capacity is already sufficient. This method preserves the contents even if an
    /// error occurs.
    pub fn try_reserve(&mut self, additional: usize) -> Result<(), AllocError> {
        let is_unique = self.is_unique();
        let enough_capacity = self.remaining_capacity() >= additional;

        if !is_unique || !enough_capacity {
            // Hopefully the least common case.
            self.try_realloc_additional(is_unique, enough_capacity, additional)?;
        }

        Ok(())
    }

    /// Reserves the minimum capacity for at least `additional` elements to be inserted in the given vector.
    ///
    /// Unlike `reserve`, this will not deliberately over-allocate to speculatively avoid frequent allocations.
    /// After calling `try_reserve_exact`, capacity will be greater than or equal to `self.len() + additional` if
    /// it returns `Ok(())`.
    /// This will also allocate if the vector is not unique.
    /// Does nothing if the capacity is already sufficient and the vector is unique.
    ///
    /// Note that the allocator may give the collection more space than it requests. Therefore, capacity can not
    /// be relied upon to be precisely minimal. Prefer `try_reserve` if future insertions are expected.
    pub fn reserve_exact(&mut self, additional: usize) {
        self.try_reserve_exact(additional).unwrap();
    }

    /// Tries to reserve the minimum capacity for at least `additional` elements to be inserted in the given vector.
    ///
    /// Unlike `try_reserve`, this will not deliberately over-allocate to speculatively avoid frequent allocations.
    /// After calling `reserve_exact`, capacity will be greater than or equal to `self.len() + additional`.
    /// This will also allocate if the vector is not unique.
    /// Does nothing if the capacity is already sufficient and the vector is unique.
    ///
    /// Note that the allocator may give the collection more space than it requests. Therefore, capacity can not
    /// be relied upon to be precisely minimal. Prefer `try_reserve` if future insertions are expected.
    pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), AllocError> {
        let is_unique = self.is_unique();
        let enough_capacity = self.remaining_capacity() >= additional;

        if !is_unique || !enough_capacity {
            // Hopefully the least common case.
            self.try_realloc_with_capacity(is_unique, additional)?;
        }

        Ok(())
    }

    /// Shrinks the capacity of the vector with a lower bound.
    ///
    /// The capacity will remain at least as large as both the length and the supplied value.
    /// If the current capacity is less than the lower limit, this is a no-op.
    pub fn shrink_to(&mut self, min_capacity: usize) {
        let min_capacity = min_capacity.max(self.len());
        if self.capacity() <= min_capacity {
            return;
        }

        let is_unique = self.is_unique();
        self.try_realloc_with_capacity(is_unique, min_capacity)
            .unwrap();
    }

    /// Shrinks the capacity of the vector as much as possible.
    pub fn shrink_to_fit(&mut self) {
        self.shrink_to(self.len())
    }

    /// Moves all the elements of `other` into `self`, leaving `other` empty.
    ///
    /// If `other is not unique, the elements are cloned instead of moved.
    pub fn append(&mut self, other: &mut Self) {
        self.reserve(other.len());

        unsafe {
            if other.is_unique() {
                // Fast path: memcpy
                other.inner.move_data(&mut self.inner);
            } else {
                // Slow path, clone each item.
                self.inner.try_extend_from_slice(other.as_slice()).unwrap();
                *other =
                    Self::try_with_capacity_in(other.capacity(), self.inner.allocator().clone())
                        .unwrap();
            }
        }
    }

    #[cold]
    fn try_realloc_additional(
        &mut self,
        is_unique: bool,
        enough_capacity: bool,
        additional: usize,
    ) -> Result<(), AllocError> {
        let new_cap = if enough_capacity {
            self.capacity()
        } else {
            grow_amortized(self.len(), additional)
        };

        self.try_realloc_with_capacity(is_unique, new_cap)
    }

    #[cold]
    fn try_realloc_with_capacity(
        &mut self,
        is_unique: bool,
        new_cap: usize,
    ) -> Result<(), AllocError> {
        let allocator = self.inner.allocator().clone();
        if is_unique && self.capacity() > 0 {
            // The buffer is not large enough, we'll have to create a new one, however we
            // know that we have the only reference to it so we'll move the data with
            // a simple memcpy instead of cloning it.

            unsafe {
                use crate::raw::{buffer_layout, Header};
                let old_cap = self.capacity();
                let old_header = self.inner.header;
                let old_layout = buffer_layout::<Header<R, A>, T>(old_cap).unwrap();
                let new_layout = buffer_layout::<Header<R, A>, T>(new_cap).unwrap();

                let new_alloc = if new_layout.size() >= old_layout.size() {
                    allocator.grow(old_header.cast(), old_layout, new_layout)
                } else {
                    allocator.shrink(old_header.cast(), old_layout, new_layout)
                }?;

                self.inner.header = new_alloc.cast();
                self.inner.header.as_mut().vec.cap = new_cap as BufferSize;

                return Ok(());
            }
        }

        // The slowest path, we pay for both the new allocation and the need to clone
        // each item one by one.
        self.inner = HeaderBuffer::try_from_slice(self.as_slice(), Some(new_cap), allocator)?;

        Ok(())
    }


    // TODO: remove this one?
    /// Returns the concatenation of two vectors.
    pub fn concatenate(mut self, mut other: Self) -> Self
    where
        T: Clone,
        A: Clone,
    {
        self.append(&mut other);

        self
    }
}


unsafe impl<T: Sync, A: Allocator + Send> Send for AtomicSharedVector<T, A> {}

impl<T, R: RefCount, A: Allocator> Clone for RefCountedVector<T, R, A> {
    fn clone(&self) -> Self {
        self.new_ref()
    }
}

impl<T: PartialEq<T>, R: RefCount, A: Allocator> PartialEq<RefCountedVector<T, R, A>>
    for RefCountedVector<T, R, A>
{
    fn eq(&self, other: &Self) -> bool {
        self.ptr_eq(other) || self.as_slice() == other.as_slice()
    }
}

impl<T: PartialEq<T>, R: RefCount, A: Allocator> PartialEq<&[T]> for RefCountedVector<T, R, A> {
    fn eq(&self, other: &&[T]) -> bool {
        self.as_slice() == *other
    }
}

impl<T, R: RefCount, A: Allocator> AsRef<[T]> for RefCountedVector<T, R, A> {
    fn as_ref(&self) -> &[T] {
        self.as_slice()
    }
}

impl<T, R: RefCount> Default for RefCountedVector<T, R, Global> {
    fn default() -> Self {
        Self::new()
    }
}

impl<'a, T, R: RefCount, A: Allocator> IntoIterator for &'a RefCountedVector<T, R, A> {
    type Item = &'a T;
    type IntoIter = core::slice::Iter<'a, T>;
    fn into_iter(self) -> core::slice::Iter<'a, T> {
        self.as_slice().iter()
    }
}

impl<'a, T: Clone, R: RefCount, A: Allocator + Clone> IntoIterator
    for &'a mut RefCountedVector<T, R, A>
{
    type Item = &'a mut T;
    type IntoIter = core::slice::IterMut<'a, T>;
    fn into_iter(self) -> core::slice::IterMut<'a, T> {
        self.as_mut_slice().iter_mut()
    }
}

impl<T, R, A, I> Index<I> for RefCountedVector<T, R, A>
where
    R: RefCount,
    A: Allocator,
    I: core::slice::SliceIndex<[T]>,
{
    type Output = <I as core::slice::SliceIndex<[T]>>::Output;
    fn index(&self, index: I) -> &Self::Output {
        self.as_slice().index(index)
    }
}

impl<T, R, A, I> IndexMut<I> for RefCountedVector<T, R, A>
where
    T: Clone,
    R: RefCount,
    A: Allocator + Clone,
    I: core::slice::SliceIndex<[T]>,
{
    fn index_mut(&mut self, index: I) -> &mut Self::Output {
        self.as_mut_slice().index_mut(index)
    }
}

impl<T, R: RefCount, A: Allocator> Deref for RefCountedVector<T, R, A> {
    type Target = [T];
    fn deref(&self) -> &[T] {
        self.as_slice()
    }
}

impl<T: Clone, R: RefCount, A: Allocator + Clone> DerefMut for RefCountedVector<T, R, A> {
    fn deref_mut(&mut self) -> &mut [T] {
        self.as_mut_slice()
    }
}

impl<T: Debug, R: RefCount, A: Allocator> Debug for RefCountedVector<T, R, A> {
    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> Result<(), core::fmt::Error> {
        self.as_slice().fmt(f)
    }
}

impl<T: Clone, A: Allocator + Clone> From<Vector<T, A>> for SharedVector<T, A> {
    fn from(vector: Vector<T, A>) -> Self {
        vector.into_shared()
    }
}

impl<T: Clone, A: Allocator + Clone> From<Vector<T, A>> for AtomicSharedVector<T, A> {
    fn from(vector: Vector<T, A>) -> Self {
        vector.into_shared_atomic()
    }
}

// In order to give us a chance to catch leaks and double-frees, test with values that implement drop.
#[cfg(test)]
fn num(val: u32) -> Box<u32> {
    Box::new(val)
}

#[test]
fn basic_shared() {
    basic_shared_impl::<DefaultRefCount>();
    basic_shared_impl::<AtomicRefCount>();

    fn basic_shared_impl<R: RefCount>() {
        let mut a: RefCountedVector<Box<u32>, R> = RefCountedVector::with_capacity(64);
        a.push(num(1));
        a.push(num(2));

        let mut b = a.new_ref();
        b.push(num(4));

        a.push(num(3));

        assert_eq!(a.as_slice(), &[num(1), num(2), num(3)]);
        assert_eq!(b.as_slice(), &[num(1), num(2), num(4)]);

        let popped = a.pop();
        assert_eq!(a.as_slice(), &[num(1), num(2)]);
        assert_eq!(popped, Some(num(3)));

        let mut b2 = b.new_ref();
        let popped = b2.pop();
        assert_eq!(b2.as_slice(), &[num(1), num(2)]);
        assert_eq!(popped, Some(num(4)));

        let c = a.concatenate(b2);
        assert_eq!(c.as_slice(), &[num(1), num(2), num(1), num(2)]);
    }
}

#[test]
fn empty_buffer() {
    let _: AtomicSharedVector<u32> = AtomicSharedVector::new();
    let _: AtomicSharedVector<u32> = AtomicSharedVector::new();

    let _: SharedVector<()> = SharedVector::new();
    let _: SharedVector<()> = SharedVector::new();

    let _: AtomicSharedVector<()> = AtomicSharedVector::new();
    let _: AtomicSharedVector<()> = AtomicSharedVector::new();

    let _: Vector<()> = Vector::new();
}

#[test]
#[rustfmt::skip]
fn grow() {
    let mut a = Vector::with_capacity(0);

    a.push(num(1));
    a.push(num(2));
    a.push(num(3));

    a.extend_from_slice(&[num(4), num(5), num(6), num(7), num(8), num(9), num(10), num(12), num(12), num(13), num(14), num(15), num(16), num(17), num(18)]);

    assert_eq!(
        a.as_slice(),
        &[num(1), num(2), num(3), num(4), num(5), num(6), num(7), num(8), num(9), num(10), num(12), num(12), num(13), num(14), num(15), num(16), num(17), num(18)]
    );

    let mut b = SharedVector::new();
    b.push(num(1));
    b.push(num(2));
    b.push(num(3));

    assert_eq!(b.as_slice(), &[num(1), num(2), num(3)]);

    let mut b = AtomicSharedVector::new();
    b.push(num(1));
    b.push(num(2));
    b.push(num(3));

    assert_eq!(b.as_slice(), &[num(1), num(2), num(3)]);
}

#[test]
fn ensure_unique_empty() {
    let mut v: SharedVector<u32> = SharedVector::new();
    v.ensure_unique();
}


#[test]
fn shrink_to_zero() {
    let mut v: SharedVector<u32> = SharedVector::new();
    v.shrink_to(0);
}