use fast_inv_sqrt::InvSqrt64;
use num_traits::{float::Float, Num};
use std::fmt::{Display, Formatter};
use std::ops::*;
#[derive(Debug, Clone, Copy, PartialEq, PartialOrd, Eq, Ord)]
pub struct Point<T: Display + Num + Copy> {
pub x: T,
pub y: T,
}
impl<T: Display + Num + Copy> Display for Point<T> {
fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
write!(f, "({}, {})", self.x, self.y)
}
}
impl<T: Display + Num + Copy> Point<T> {
pub fn new(x: T, y: T) -> Self {
Self { x, y }
}
pub fn map_x<F: FnOnce(T) -> T>(self, func: F) -> Self {
Point::new(func(self.x), self.y)
}
pub fn map_y<F: FnOnce(T) -> T>(self, func: F) -> Self {
Point::new(self.x, func(self.y))
}
pub fn map_both<P: Display + Num + Copy, F: Fn(T) -> P>(self, func: F) -> Point<P> {
Point::new(func(self.x), func(self.y))
}
}
impl<T: Display + Float + Copy> Point<T> {
pub fn angle(self) -> T {
self.y.atan2(self.x)
}
pub fn to_cartesian(self) -> Point<T> {
Point::new(self.x * self.y.cos(), self.x * self.y.sin())
}
}
impl<T: Display + Num + Copy + InvSqrt64 + From<f64>> Point<T> {
pub fn length(self) -> T {
(1.0 / (self.x * self.x + self.y * self.y).inv_sqrt64()).into()
}
pub fn length_squared(self) -> T {
self.x * self.x + self.y * self.y
}
}
impl<T: Display + Float + Copy + InvSqrt64 + From<f64>> Point<T> {
pub fn normalize(self) -> Self {
let inv_square = (self.x * self.x + self.y * self.y).inv_sqrt64();
Point::new(self.x * inv_square.into(), self.y * inv_square.into())
}
pub fn to_polar(self) -> Point<T> {
Point::new(self.length(), self.angle())
}
}
impl<T: Display + Num + Copy> Add<Point<T>> for Point<T> {
type Output = Self;
fn add(self, rhs: Point<T>) -> Self::Output {
Point::new(self.x + rhs.x, self.y + rhs.y)
}
}
impl<T: Display + Num + Copy> Sub<Point<T>> for Point<T> {
type Output = Self;
fn sub(self, rhs: Point<T>) -> Self::Output {
Point::new(self.x - rhs.x, self.y - rhs.y)
}
}
impl<T: Display + Num + Copy + Copy> Mul<T> for Point<T> {
type Output = Self;
fn mul(self, rhs: T) -> Self::Output {
Point::new(self.x * rhs, self.y * rhs)
}
}
impl<T: Display + Num + Copy + Copy> Div<T> for Point<T> {
type Output = Point<T>;
fn div(self, rhs: T) -> Self::Output {
Point::new(self.x / rhs, self.y / rhs)
}
}
impl<T: Display + Num + Copy> AddAssign for Point<T> {
fn add_assign(&mut self, other: Self) {
*self = Self {
x: self.x + other.x,
y: self.y + other.y,
};
}
}
impl<T: Display + Num + Copy> SubAssign for Point<T> {
fn sub_assign(&mut self, other: Self) {
*self = Self {
x: self.x - other.x,
y: self.y - other.y,
};
}
}
impl<F: Display + Num + Copy, T: Display + Num + Copy + From<F>> From<(F, F)> for Point<T> {
fn from(value: (F, F)) -> Self {
Point {
x: From::<F>::from(value.0),
y: From::<F>::from(value.1),
}
}
}