# sevensense-embedding
[](https://crates.io/crates/sevensense-embedding)
[](https://docs.rs/sevensense-embedding)
[](../../LICENSE)
> Neural embedding generation using Perch 2.0 for bioacoustic analysis.
**sevensense-embedding** transforms audio segments into rich 1536-dimensional embedding vectors using Google's Perch 2.0 model via ONNX Runtime. These embeddings capture the acoustic essence of bird vocalizations, enabling similarity search, clustering, and species identification.
## Features
- **Perch 2.0 Integration**: State-of-the-art bird audio embeddings
- **ONNX Runtime**: Cross-platform GPU/CPU inference
- **1536-Dimensional Vectors**: Rich semantic representation
- **Batch Processing**: Efficient multi-segment inference
- **Product Quantization (PQ)**: 4x memory reduction for storage
- **L2 Normalization**: Optimized for cosine similarity search
## Use Cases
| Single Inference | Embed one audio segment | `embed()` |
| Batch Processing | Embed multiple segments efficiently | `embed_batch()` |
| Streaming | Real-time embedding generation | `EmbeddingStream::new()` |
| Quantization | Compress embeddings for storage | `quantize_pq()` |
| Validation | Verify embedding quality | `validate()` |
## Installation
Add to your `Cargo.toml`:
```toml
[dependencies]
sevensense-embedding = "0.1"
```
### ONNX Model Setup
The Perch 2.0 ONNX model is automatically downloaded on first use. For manual setup:
```bash
# Download model manually
curl -L https://example.com/perch-2.0.onnx -o models/perch-2.0.onnx
```
## Quick Start
```rust
use sevensense_embedding::{EmbeddingPipeline, EmbeddingConfig};
use sevensense_audio::AudioLoader;
#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
// Initialize the embedding pipeline
let config = EmbeddingConfig::default();
let pipeline = EmbeddingPipeline::new(config).await?;
// Load audio and generate embedding
let audio = AudioLoader::load("birdsong.wav").await?;
let embedding = pipeline.embed(&audio).await?;
println!("Embedding dimension: {}", embedding.len()); // 1536
println!("L2 norm: {:.4}", embedding.iter().map(|x| x*x).sum::<f32>().sqrt());
Ok(())
}
```
---
<details>
<summary><b>Tutorial: Basic Embedding Generation</b></summary>
### Single Audio Embedding
```rust
use sevensense_embedding::{EmbeddingPipeline, EmbeddingConfig};
#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
// Create pipeline with default config
let pipeline = EmbeddingPipeline::new(EmbeddingConfig::default()).await?;
// Embed from mel spectrogram
let mel = compute_mel_spectrogram(&audio)?;
let embedding = pipeline.embed_mel(&mel).await?;
// Embedding properties
assert_eq!(embedding.len(), 1536);
// L2 normalized by default
let norm: f32 = embedding.iter().map(|x| x*x).sum::<f32>().sqrt();
assert!((norm - 1.0).abs() < 1e-5);
Ok(())
}
```
### From Raw Audio
```rust
use sevensense_embedding::EmbeddingPipeline;
use sevensense_audio::AudioLoader;
let audio = AudioLoader::load("recording.wav").await?;
let pipeline = EmbeddingPipeline::new(Default::default()).await?;
// Pipeline handles mel spectrogram computation internally
let embedding = pipeline.embed_audio(&audio).await?;
```
</details>
<details>
<summary><b>Tutorial: Batch Processing</b></summary>
### Efficient Batch Embedding
```rust
use sevensense_embedding::{EmbeddingPipeline, BatchConfig};
let pipeline = EmbeddingPipeline::new(Default::default()).await?;
// Configure batching
let batch_config = BatchConfig {
batch_size: 32, // Process 32 segments at once
max_concurrent: 4, // 4 concurrent batches
prefetch: true, // Prefetch next batch
};
// Embed multiple segments
let segments = load_segments("recordings/")?;
let embeddings = pipeline.embed_batch(&segments, batch_config).await?;
println!("Generated {} embeddings", embeddings.len());
```
### Progress Tracking
```rust
use sevensense_embedding::EmbeddingPipeline;
let pipeline = EmbeddingPipeline::new(Default::default()).await?;
let embeddings = pipeline.embed_batch_with_progress(&segments, |progress| {
println!("Progress: {}/{} ({:.1}%)",
progress.completed,
progress.total,
progress.percentage());
}).await?;
```
### Parallel Processing
```rust
use sevensense_embedding::EmbeddingPipeline;
use futures::stream::{self, StreamExt};
let pipeline = Arc::new(EmbeddingPipeline::new(Default::default()).await?);
let embeddings: Vec<_> = stream::iter(segments)
.map(|seg| {
let pipeline = Arc::clone(&pipeline);
async move { pipeline.embed(&seg).await }
})
.buffer_unordered(8) // 8 concurrent embeddings
.collect()
.await;
```
</details>
<details>
<summary><b>Tutorial: Embedding Quantization</b></summary>
### Product Quantization (PQ)
Product Quantization reduces embedding size by 4x while maintaining search quality.
```rust
use sevensense_embedding::{EmbeddingPipeline, ProductQuantizer};
let pipeline = EmbeddingPipeline::new(Default::default()).await?;
// Generate embeddings
let embeddings: Vec<Vec<f32>> = generate_embeddings(&segments).await?;
// Train PQ codebook on embeddings
let pq = ProductQuantizer::train(&embeddings, 96, 256)?; // 96 subvectors, 256 centroids
// Quantize embeddings
let quantized: Vec<Vec<u8>> = embeddings.iter()
.map(|e| pq.encode(e))
.collect();
// Memory reduction
let original_size = embeddings.len() * 1536 * 4; // f32 = 4 bytes
let quantized_size = quantized.len() * 96; // u8 per subvector
println!("Compression ratio: {:.1}x", original_size as f32 / quantized_size as f32);
// Output: Compression ratio: 64.0x
```
### Asymmetric Distance Computation
```rust
use sevensense_embedding::ProductQuantizer;
// Query embedding (full precision)
let query = pipeline.embed(&query_audio).await?;
// Compute distances to quantized vectors
let distances: Vec<f32> = quantized.iter()
.map(|q| pq.asymmetric_distance(&query, q))
.collect();
// Find nearest neighbors
let mut indexed: Vec<_> = distances.iter().enumerate().collect();
indexed.sort_by(|a, b| a.1.partial_cmp(b.1).unwrap());
let top_10: Vec<_> = indexed.iter().take(10).collect();
```
</details>
<details>
<summary><b>Tutorial: Model Configuration</b></summary>
### Custom ONNX Configuration
```rust
use sevensense_embedding::{EmbeddingConfig, ExecutionProvider};
let config = EmbeddingConfig {
model_path: "models/perch-2.0.onnx".into(),
execution_provider: ExecutionProvider::CUDA, // GPU acceleration
num_threads: 4, // CPU threads (if CPU)
normalize: true, // L2 normalize output
warmup: true, // Warmup inference
};
let pipeline = EmbeddingPipeline::new(config).await?;
```
### Execution Providers
```rust
use sevensense_embedding::ExecutionProvider;
// CPU (default)
let cpu_config = EmbeddingConfig {
execution_provider: ExecutionProvider::CPU,
..Default::default()
};
// CUDA (NVIDIA GPU)
let cuda_config = EmbeddingConfig {
execution_provider: ExecutionProvider::CUDA,
..Default::default()
};
// CoreML (Apple Silicon)
let coreml_config = EmbeddingConfig {
execution_provider: ExecutionProvider::CoreML,
..Default::default()
};
```
### Memory Optimization
```rust
use sevensense_embedding::{EmbeddingConfig, MemoryConfig};
let config = EmbeddingConfig {
memory: MemoryConfig {
arena_extend_strategy: ArenaExtendStrategy::NextPowerOfTwo,
initial_chunk_size: 1024 * 1024, // 1MB
max_chunk_size: 16 * 1024 * 1024, // 16MB
},
..Default::default()
};
```
</details>
<details>
<summary><b>Tutorial: Embedding Validation</b></summary>
### Quality Checks
```rust
use sevensense_embedding::{EmbeddingValidator, ValidationResult};
let validator = EmbeddingValidator::new();
let embedding = pipeline.embed(&audio).await?;
let result = validator.validate(&embedding)?;
match result {
ValidationResult::Valid => println!("Embedding is valid"),
ValidationResult::Invalid(reasons) => {
for reason in reasons {
eprintln!("Invalid: {}", reason);
}
}
}
```
### Validation Criteria
```rust
use sevensense_embedding::{ValidationCriteria, EmbeddingValidator};
let criteria = ValidationCriteria {
expected_dim: 1536,
max_nan_ratio: 0.0, // No NaN values allowed
max_inf_ratio: 0.0, // No Inf values allowed
min_variance: 1e-6, // Minimum variance threshold
norm_range: (0.99, 1.01), // Expected L2 norm range
};
let validator = EmbeddingValidator::with_criteria(criteria);
```
### Batch Validation
```rust
let results = validator.validate_batch(&embeddings);
let valid_count = results.iter().filter(|r| r.is_valid()).count();
let invalid_count = results.len() - valid_count;
println!("{} valid, {} invalid embeddings", valid_count, invalid_count);
```
</details>
---
## Configuration
### EmbeddingConfig Parameters
| `model_path` | Auto-download | Path to ONNX model |
| `execution_provider` | CPU | CUDA, CoreML, or CPU |
| `num_threads` | 4 | CPU inference threads |
| `normalize` | true | L2 normalize embeddings |
| `warmup` | true | Run warmup inference |
### Model Specifications
| Input | Mel spectrogram [batch, 128, 312] |
| Output | Embedding vector [batch, 1536] |
| Model Size | ~25 MB |
| Inference Time | ~15ms (CPU) / ~3ms (GPU) |
## Performance
| Single Inference | 15ms | 3ms |
| Batch (32) | 120ms | 20ms |
| Throughput | 260/s | 1600/s |
## Links
- **Homepage**: [ruv.io](https://ruv.io)
- **Repository**: [github.com/ruvnet/ruvector](https://github.com/ruvnet/ruvector)
- **Crates.io**: [crates.io/crates/sevensense-embedding](https://crates.io/crates/sevensense-embedding)
- **Documentation**: [docs.rs/sevensense-embedding](https://docs.rs/sevensense-embedding)
## License
MIT License - see [LICENSE](../../LICENSE) for details.
---
*Part of the [7sense Bioacoustic Intelligence Platform](https://ruv.io) by rUv*