1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
use serde::{
    ser::{self, SerializeTuple}, 
    Serialize
};
use paste::paste;

use crate::error::{Error, Result};

pub struct Serializer {
    /// the parser stack, we simulate recursion with this structure
    stack: Vec<Vec<u8>>
}

impl Serializer {
    pub fn to_bytes<T>(value: &T) -> Result<Vec<u8>>
    where
        T: Serialize,
    {
        let mut serializer = Serializer {
            stack: Vec::new()
        };
        serializer.stack.push(Vec::new());
        value.serialize(&mut serializer)?;
        Ok(serializer.stack.pop().unwrap())
    }
}

fn be_bytes_compact(src: &[u8]) -> &[u8] {
    for i in 0..src.len() {
        if src[i] != 0 { return &src[i..] }
    }
    return &[0]
}

macro_rules! impl_seralize_integer {
    ($($ity:ident),+) => {
        paste! {$(
            fn [<serialize_ $ity>](self, v: $ity) -> Result<()> {
                self.serialize_bytes(be_bytes_compact(&v.to_be_bytes()))
            }
        )+}
    }
}

macro_rules! impl_seralize_not_supported {
    ($($ity:ident),+) => {
        paste! {$(
            fn [<serialize_ $ity>](self, _v: $ity) -> Result<()> {
                Err(Error::TypeNotSupported)
            }
        )+}
    }
}



impl<'a> ser::Serializer for &'a mut Serializer {
    // The output type produced by this `Serializer` during successful
    // serialization. Most serializers that produce text or binary output should
    // set `Ok = ()` and serialize into an `io::Write` or buffer contained
    // within the `Serializer` instance, as happens here. Serializers that build
    // in-memory data structures may be simplified by using `Ok` to propagate
    // the data structure around.
    type Ok = ();

    // The error type when some error occurs during serialization.
    type Error = Error;

    // Associated types for keeping track of additional state while serializing
    // compound data structures like sequences and maps. In this case no
    // additional state is required beyond what is already stored in the
    // Serializer struct.
    type SerializeSeq = Self;
    type SerializeTuple = Self;
    type SerializeTupleStruct = Self;
    type SerializeTupleVariant = Self;
    type SerializeMap = Self;
    type SerializeStruct = Self;
    type SerializeStructVariant = Self;

    // yellow paper didn't mention how to encode bool and floats
    impl_seralize_not_supported! {bool, f32, f64, i8, i16, i32, i64}
    
    // according to yellow paper, integers should be encoded as bytes (big endian)
    impl_seralize_integer! {u8, u16, u32, u64}

    /// Serialize a char as a single-character string. 
    fn serialize_char(self, v: char) -> Result<()> {
        self.serialize_str(&v.to_string())
    }

    /// strings are bytes. THE YELLOW PAPER IS ALWAYS RIGHT!!!
    fn serialize_str(self, v: &str) -> Result<()> {
        self.serialize_bytes(v.as_bytes())
    }

    /// YELLOW PAPER told us how to encode a byte array.
    /// LONG LIVE THE YELLOW PAPER!
    fn serialize_bytes(self, v: &[u8]) -> Result<()> {
        let last = self.stack.last_mut().unwrap();
        match v.len() as u64 {
            // x if ||x|| = 1 \land x[0] \lt 128
            1 if v[0] < 128 => last.extend(v),
            // (128 + ||x||) \dot x if ||x|| \lt 56
            0..=55 =>  {
                last.push(128 + v.len() as u8);
                last.extend(v);
            },
            // (183 + ||BE(||x||)||) \dot BE(||x||) \dot x if ||x|| \lt 2^64
            56..=u64::MAX => {
                let be_bytes = v.len().to_be_bytes();
                let len_be = be_bytes_compact(&be_bytes);
                last.push(183 + len_be.len() as u8);
                last.extend(len_be);
                last.extend(v);
            }
        }
        
        Ok(())
    }

    /// nothing
    /// So what is the difference between (), (()), None, "" and []
    /// none just means nothing, it not even an empty list
    fn serialize_none(self) -> Result<()> {
        let last = self.stack.last_mut().unwrap();
        last.push(0x80);
        Ok(())
    }

    fn serialize_some<T>(self, value: &T) -> Result<()>
    where
        T: ?Sized + Serialize,
    {
        value.serialize(self)
    }

    /// unit is an empty tuple.
    /// In our design principle, an empty tuple is an empty list.
    /// So it should be encoded.
    fn serialize_unit(self) -> Result<()> {
        let unit = self.serialize_tuple(0)?;
        unit.end()
    }

    /// unit struct in NOT even an empty tuple.
    /// It's just a mark. So we serialize it as none.
    fn serialize_unit_struct(self, _name: &'static str) -> Result<()> {
        self.serialize_none()
    }

    /// Note we are **LOSING** information here.
    /// We dropped the variant index of this enum so you cannot
    /// deserialize it.
    /// We have to choose this method because there is no enums in Golang 
    /// but eth is written in go. Treating enums as a transparent layer 
    /// can make our furture implementation compatiable with ETH.
    fn serialize_unit_variant(
        self,
        _name: &'static str,
        _variant_index: u32,
        _variant: &'static str,
    ) -> Result<()> {
        self.serialize_none()
    }

    /// This is TRANSPARENT!
    fn serialize_newtype_struct<T>(
        self,
        _name: &'static str,
        value: &T,
    ) -> Result<()>
    where
        T: ?Sized + Serialize,
    {
        value.serialize(self)
    }

    /// TRANSPARENT! But we do not support it.
    /// What a pity.
    fn serialize_newtype_variant<T>(
        self,
        _name: &'static str,
        _variant_index: u32,
        _variant: &'static str,
        value: &T,
    ) -> Result<()>
    where
        T: ?Sized + Serialize,
    {
        value.serialize(self)
    }

    /// serialize a sequence, the sequence will be parsed recursively
    fn serialize_seq(self, _len: Option<usize>) -> Result<Self::SerializeSeq> {
        self.stack.push(Vec::new());
        Ok(self)
    }
    
    fn serialize_tuple(self, _len: usize) -> Result<Self::SerializeTuple> {
        self.stack.push(Vec::new());
        Ok(self)
    }

    /// There is only a tuple
    fn serialize_tuple_struct(
        self,
        _name: &'static str,
        len: usize,
    ) -> Result<Self::SerializeTupleStruct> {
        self.serialize_tuple(len)
    }

    fn serialize_tuple_variant(
        self,
        _name: &'static str,
        _variant_index: u32,
        _variant: &'static str,
        len: usize,
    ) -> Result<Self::SerializeTupleVariant> {
        self.serialize_tuple(len)
    }

    fn serialize_map(self, _len: Option<usize>) -> Result<Self::SerializeMap> {
        Err(Error::TypeNotSupported)
    }

    /// We parse struct as we are parsing a sequence
    fn serialize_struct(
        self,
        _name: &'static str,
        _len: usize,
    ) -> Result<Self::SerializeStruct> {
        self.stack.push(Vec::new());
        Ok(self)
    }

    fn serialize_struct_variant(
        self,
        name: &'static str,
        _variant_index: u32,
        _variant: &'static str,
        len: usize,
    ) -> Result<Self::SerializeStructVariant> {
        self.serialize_struct(name, len)
    }
}

/// This impl is SerializeSeq so these methods are called after `serialize_seq`
/// is called on the Serializer.
impl<'a> ser::SerializeSeq for &'a mut Serializer {
    // Must match the `Ok` type of the serializer.
    type Ok = ();
    // Must match the `Error` type of the serializer.
    type Error = Error;

    // Serialize a single element of the sequence.
    fn serialize_element<T>(&mut self, value: &T) -> Result<()>
    where
        T: ?Sized + Serialize,
    {
        value.serialize(&mut **self)
    }

    // Close the sequence.
    fn end(self) -> Result<()> {
        self.frame_return();
        Ok(())
    }
}

// Same thing but for tuples.
impl<'a> ser::SerializeTuple for &'a mut Serializer {
    type Ok = ();
    type Error = Error;

    fn serialize_element<T>(&mut self, value: &T) -> Result<()>
    where
        T: ?Sized + Serialize,
    {
        value.serialize(&mut **self)
    }

    fn end(self) -> Result<()> {
        self.frame_return();
        Ok(())
    }
}

// Same thing but for tuple structs.
impl<'a> ser::SerializeTupleStruct for &'a mut Serializer {
    type Ok = ();
    type Error = Error;

    fn serialize_field<T>(&mut self, value: &T) -> Result<()>
    where
        T: ?Sized + Serialize,
    {
        value.serialize(&mut **self)
    }

    fn end(self) -> Result<()> {
        self.frame_return();
        Ok(())
    }
}

// Tuple variants are a little different. Refer back to the
// `serialize_tuple_variant` method above:
//
//    self.output += "{";
//    variant.serialize(&mut *self)?;
//    self.output += ":[";
//
// So the `end` method in this impl is responsible for closing both the `]` and
// the `}`.
impl<'a> ser::SerializeTupleVariant for &'a mut Serializer {
    type Ok = ();
    type Error = Error;

    fn serialize_field<T>(&mut self, value: &T) -> Result<()>
    where
        T: ?Sized + Serialize,
    {
        value.serialize(&mut **self)
    }

    fn end(self) -> Result<()> {
        self.frame_return();
        Ok(())
    }
}

impl<'a> ser::SerializeMap for &'a mut Serializer {
    type Ok = ();
    type Error = Error;

    fn serialize_key<T>(&mut self, _key: &T) -> Result<()>
    where
        T: ?Sized + Serialize,
    {
        Err(Error::TypeNotSupported)
    }
    
    fn serialize_value<T>(&mut self, _value: &T) -> Result<()>
    where
        T: ?Sized + Serialize,
    {
        Err(Error::TypeNotSupported)
    }

    fn end(self) -> Result<()> {
        Err(Error::TypeNotSupported)
    }
}

// Structs are like maps in which the keys are constrained to be compile-time
// constant strings.
impl<'a> ser::SerializeStruct for &'a mut Serializer {
    type Ok = ();
    type Error = Error;

    fn serialize_field<T>(&mut self, _key: &'static str, value: &T) -> Result<()>
    where
        T: ?Sized + Serialize,
    {
        value.serialize(&mut **self)
    }

    fn end(self) -> Result<()> {
        self.frame_return();
        Ok(())
    }
}

impl Serializer {
    fn frame_return(&mut self) {
        // s(x)
        let frame = self.stack.pop().unwrap();
        // ||s(x)||
        let len = frame.len();

        let last = self.stack.last_mut().unwrap();

        match len as u64 {
            // (192 + ||s(x)||) \dot s(x) if s(x) \ne \empty \land ||s(x)|| \lt 56
            0..=55 => {
                last.push(192 + len as u8);
                last.extend(frame);
            },
            56..=u64::MAX => {
                let be_bytes = len.to_be_bytes();
                let len_be = be_bytes_compact(&be_bytes);
                last.push(247 + len_be.len() as u8);
                last.extend(len_be);
                last.extend(frame);
            }
        }
        
    }
}

// Similar to `SerializeTupleVariant`, here the `end` method is responsible for
// closing both of the curly braces opened by `serialize_struct_variant`.
impl<'a> ser::SerializeStructVariant for &'a mut Serializer {
    type Ok = ();
    type Error = Error;
    
    fn serialize_field<T>(&mut self, _key: &'static str, value: &T) -> Result<()>
    where
        T: ?Sized + Serialize,
    {
        value.serialize(&mut **self)
    }

    fn end(self) -> Result<()> {
        self.frame_return();
        Ok(())
    }
}