1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
//! Memory protection and encryption.
//!
//! Sequoia makes an effort to protect secrets stored in memory. Even
//! though a process's memory should be protected from being read by an
//! adversary, there may be bugs in the program or the architecture
//! the program is running on that allow (partial) recovery of data.
//! Or, the process may be serialized to persistent storage, and its
//! memory may be inspected while it is not running.
//!
//! To reduce the window for these kind of exfiltrations, we use
//! [`Protected`] to clear the memory once it is no longer in use, and
//! [`Encrypted`] to protect long-term secrets like passwords and
//! secret keys.
//!
//! [`Protected`]: struct.Protected.html
//! [`Encrypted`]: struct.Encrypted.html
//!
//! Furthermore, operations involving secrets must be carried out in a
//! way that avoids leaking information. For example, comparison
//! must be done in constant time with [`secure_cmp`].
//!
//! [`secure_cmp`]: fn.secure_cmp.html
use std::cmp::{min, Ordering};
use std::fmt;
use std::hash::{Hash, Hasher};
use std::ops::{Deref, DerefMut};
/// Protected memory.
///
/// The memory is guaranteed not to be copied around, and is cleared
/// when the object is dropped.
///
/// # Examples
///
/// ```rust
/// use sequoia_openpgp::crypto::mem::Protected;
///
/// {
/// let p: Protected = vec![0, 1, 2].into();
/// assert_eq!(p.as_ref(), &[0, 1, 2]);
/// }
///
/// // p is cleared once it goes out of scope.
/// ```
// # Note on the implementation
//
// We use a boxed slice, then Box::leak the Box. This takes the
// knowledge about the shape of the heap allocation away from Rust,
// preventing any optimization based on that.
//
// For example, Rust could conceivably compact the heap: The borrow
// checker knows when no references exist, and this is an excellent
// opportunity to move the object on the heap because only one pointer
// needs to be updated.
pub struct Protected(*mut [u8]);
// Safety: Box<[u8]> is Send and Sync, we do not expose any
// functionality that was not possible before, hence Protected may
// still be Send and Sync.
unsafe impl Send for Protected {}
unsafe impl Sync for Protected {}
impl Clone for Protected {
fn clone(&self) -> Self {
// Make a vector with the correct size to avoid potential
// reallocations when turning it into a `Protected`.
let mut p = Vec::with_capacity(self.len());
p.extend_from_slice(&self);
p.into_boxed_slice().into()
}
}
impl PartialEq for Protected {
fn eq(&self, other: &Self) -> bool {
secure_cmp(&self, &other) == Ordering::Equal
}
}
impl Eq for Protected {}
impl Hash for Protected {
fn hash<H: Hasher>(&self, state: &mut H) {
self.as_ref().hash(state);
}
}
impl Protected {
/// Converts to a buffer for modification.
///
/// Don't expose `Protected` values unless you know what you're doing.
pub(crate) fn expose_into_unprotected_vec(self) -> Vec<u8> {
let mut p = Vec::with_capacity(self.len());
p.extend_from_slice(&self);
p
}
}
impl Deref for Protected {
type Target = [u8];
fn deref(&self) -> &Self::Target {
self.as_ref()
}
}
impl AsRef<[u8]> for Protected {
fn as_ref(&self) -> &[u8] {
unsafe { &*self.0 }
}
}
impl AsMut<[u8]> for Protected {
fn as_mut(&mut self) -> &mut [u8] {
unsafe { &mut *self.0 }
}
}
impl DerefMut for Protected {
fn deref_mut(&mut self) -> &mut [u8] {
self.as_mut()
}
}
impl From<Vec<u8>> for Protected {
fn from(mut v: Vec<u8>) -> Self {
// Make a vector with the correct size to avoid potential
// reallocations when turning it into a `Protected`.
let mut p = Vec::with_capacity(v.len());
p.extend_from_slice(&v);
// Now clear the previous allocation. Just to be safe, we
// clear the whole allocation.
let capacity = v.capacity();
unsafe {
// Safety: New size is equal to the capacity, and we
// initialize all elements.
v.set_len(capacity);
memsec::memzero(v.as_mut_ptr(), capacity);
}
p.into_boxed_slice().into()
}
}
impl From<Box<[u8]>> for Protected {
fn from(v: Box<[u8]>) -> Self {
Protected(Box::leak(v))
}
}
impl From<&[u8]> for Protected {
fn from(v: &[u8]) -> Self {
Vec::from(v).into()
}
}
impl Drop for Protected {
fn drop(&mut self) {
unsafe {
let len = self.len();
memsec::memzero(self.as_mut().as_mut_ptr(), len);
Box::from_raw(self.0);
}
}
}
impl fmt::Debug for Protected {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
if cfg!(debug_assertions) {
write!(f, "{:?}", self.0)
} else {
f.write_str("[<Redacted>]")
}
}
}
/// Encrypted memory.
///
/// This type encrypts sensitive data, such as secret keys, in memory
/// while they are unused, and decrypts them on demand. This protects
/// against cross-protection-boundary readout via microarchitectural
/// flaws like Spectre or Meltdown, via attacks on physical layout
/// like Rowbleed, and even via coldboot attacks.
///
/// The key insight is that these kinds of attacks are imperfect,
/// i.e. the recovered data contains bitflips, or the attack only
/// provides a probability for any given bit. Applied to
/// cryptographic keys, these kind of imperfect attacks are enough to
/// recover the actual key.
///
/// This implementation on the other hand, derives a sealing key from
/// a large area of memory, the "pre-key", using a key derivation
/// function. Now, any single bitflip in the readout of the pre-key
/// will avalanche through all the bits in the sealing key, rendering
/// it unusable with no indication of where the error occurred.
///
/// This kind of protection was pioneered by OpenSSH. The commit
/// adding it can be found
/// [here](https://marc.info/?l=openbsd-cvs&m=156109087822676).
///
/// # Examples
///
/// ```rust
/// use sequoia_openpgp::crypto::mem::Encrypted;
///
/// let e = Encrypted::new(vec![0, 1, 2].into());
/// e.map(|p| {
/// // e is temporarily decrypted and made available to the closure.
/// assert_eq!(p.as_ref(), &[0, 1, 2]);
/// // p is cleared once the function returns.
/// });
/// ```
#[derive(Clone, Debug)]
pub struct Encrypted {
ciphertext: Protected,
iv: Protected,
}
assert_send_and_sync!(Encrypted);
impl PartialEq for Encrypted {
fn eq(&self, other: &Self) -> bool {
// Protected::eq is time-constant.
self.map(|a| other.map(|b| a == b))
}
}
impl Eq for Encrypted {}
impl Hash for Encrypted {
fn hash<H: Hasher>(&self, state: &mut H) {
self.map(|k| Hash::hash(k, state));
}
}
/// The number of pages containing random bytes to derive the prekey
/// from.
const ENCRYPTED_MEMORY_PREKEY_PAGES: usize = 4;
/// Page size.
const ENCRYPTED_MEMORY_PAGE_SIZE: usize = 4096;
/// This module contains the code that needs to access the prekey.
///
/// Code outside of it cannot access it, because `PREKEY` is private.
mod has_access_to_prekey {
use std::io::{self, Cursor, Write};
use crate::types::{AEADAlgorithm, HashAlgorithm, SymmetricAlgorithm};
use crate::crypto::{aead, SessionKey};
use crate::crypto::hash::Digest;
use super::*;
lazy_static::lazy_static! {
static ref PREKEY: Box<[Box<[u8]>]> = {
let mut pages = Vec::new();
for _ in 0..ENCRYPTED_MEMORY_PREKEY_PAGES {
let mut page = vec![0; ENCRYPTED_MEMORY_PAGE_SIZE];
crate::crypto::random(&mut page);
pages.push(page.into());
}
pages.into()
};
}
// Algorithms used for the memory encryption.
//
// The digest of the hash algorithm must be at least as large as
// the size of the key used by the symmetric algorithm. All
// algorithms MUST be supported by the cryptographic library.
const HASH_ALGO: HashAlgorithm = HashAlgorithm::SHA256;
const SYMMETRIC_ALGO: SymmetricAlgorithm = SymmetricAlgorithm::AES256;
const AEAD_ALGO: AEADAlgorithm = AEADAlgorithm::EAX;
impl Encrypted {
/// Computes the sealing key used to encrypt the memory.
fn sealing_key() -> SessionKey {
let mut ctx = HASH_ALGO.context()
.expect("Mandatory algorithm unsupported");
PREKEY.iter().for_each(|page| ctx.update(page));
let mut sk: SessionKey = vec![0; 256/8].into();
let _ = ctx.digest(&mut sk);
sk
}
/// Encrypts the given chunk of memory.
pub fn new(p: Protected) -> Self {
let mut iv =
vec![0; AEAD_ALGO.iv_size()
.expect("Mandatory algorithm unsupported")];
crate::crypto::random(&mut iv);
let mut ciphertext = Vec::new();
{
let mut encryptor =
aead::Encryptor::new(1,
SYMMETRIC_ALGO,
AEAD_ALGO,
4096,
&iv,
&Self::sealing_key(),
&mut ciphertext)
.expect("Mandatory algorithm unsupported");
encryptor.write_all(&p).unwrap();
encryptor.finish().unwrap();
}
Encrypted {
ciphertext: ciphertext.into(),
iv: iv.into(),
}
}
/// Maps the given function over the temporarily decrypted
/// memory.
pub fn map<F, T>(&self, mut fun: F) -> T
where F: FnMut(&Protected) -> T
{
let mut plaintext = Vec::new();
let mut decryptor =
aead::Decryptor::new(1,
SYMMETRIC_ALGO,
AEAD_ALGO,
4096,
&self.iv,
&Self::sealing_key(),
Cursor::new(&self.ciphertext))
.expect("Mandatory algorithm unsupported");
io::copy(&mut decryptor, &mut plaintext)
.expect("Encrypted memory modified or corrupted");
let plaintext: Protected = plaintext.into();
fun(&plaintext)
}
}
}
/// Time-constant comparison.
pub fn secure_cmp(a: &[u8], b: &[u8]) -> Ordering {
let ord1 = a.len().cmp(&b.len());
let ord2 = unsafe {
memsec::memcmp(a.as_ptr(), b.as_ptr(), min(a.len(), b.len()))
};
let ord2 = match ord2 {
1..=std::i32::MAX => Ordering::Greater,
0 => Ordering::Equal,
std::i32::MIN..=-1 => Ordering::Less,
};
if ord1 == Ordering::Equal { ord2 } else { ord1 }
}