1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
//! # Semantic analyzer
//! Semantic analyzer provides algorithms to analyze AST for different
//! rules and generate `Semantic State stack` stack results. AST represent tree
//! nodes of language constructions and fully cover all flow of the program
//! represented through AST. And it's **Turing-complete**.
//!
//! ## Semantic State
//! Semantic State contains basic entities:
//! - `Global State` - global state of semantic analyzer results.
//! - `Context` - stack for `Block state` of each functions body state.
//! - `Errors` - semantic analyzes errors.z
use crate::ast::{self, CodeLocation, GetLocation, GetName, MAX_PRIORITY_LEVEL_FOR_EXPRESSIONS};
use crate::types::block_state::BlockState;
use crate::types::expression::{
Expression, ExpressionResult, ExpressionResultValue, ExpressionStructValue,
};
use crate::types::semantic::{
ExtendedExpression, GlobalSemanticContext, SemanticContext, SemanticContextInstruction,
SemanticStack,
};
use crate::types::types::{Type, TypeName};
use crate::types::{
error, Binding, Constant, ConstantName, Function, FunctionCall, FunctionName,
FunctionParameter, FunctionStatement, InnerValueName, LabelName, LetBinding, Value,
};
#[cfg(feature = "codec")]
use serde::{Deserialize, Serialize};
use std::cell::RefCell;
use std::collections::HashMap;
use std::marker::PhantomData;
use std::rc::Rc;
/// # Global State
/// Global state can contains state declarations of:
/// - Constants
/// - Types
/// - Functions
/// And Semantic State context results for Global State context:
/// - Context
/// The visibility of Global state limited by current module.
/// `Context` contains results of `Semantic` stack, as result of
/// Semantic analyzer for Global State context. It's can be used for
/// post-verification process, linting, Codegen.
#[derive(Debug)]
#[cfg_attr(feature = "codec", derive(Serialize, Deserialize))]
pub struct GlobalState<I: SemanticContextInstruction> {
/// Constants declarations
pub constants: HashMap<ConstantName, Constant>,
/// Types declarations
pub types: HashMap<TypeName, Type>,
/// Functions declarations
pub functions: HashMap<FunctionName, Function>,
/// Context as Semantic Stack Context results contains basic semantic
/// result tree for Global context state.
pub context: SemanticStack<I>,
}
/// # State
/// Basic entity that contains:
/// - `Global State` - types, constants, functions declaration and
/// most important - context results of Semantic State stack, that can be
/// used for post-verification and/or Codegen.
/// - `Context` stack for `Block state` of each functions body state
/// - `Error State` contains errors stack as result of Semantic analyzer
#[derive(Debug)]
#[cfg_attr(feature = "codec", derive(Serialize))]
pub struct State<E, I>
where
E: ExtendedExpression,
I: SemanticContextInstruction,
{
/// Global State for current State
pub global: GlobalState<I>,
/// Context for all `Block State` stack that related to concrete functions body.
#[cfg_attr(feature = "codec", serde(skip))]
pub context: Vec<Rc<RefCell<BlockState<I>>>>,
/// Error state results stack
pub errors: Vec<error::StateErrorResult>,
phantom: PhantomData<E>,
}
impl<E, I> Default for State<E, I>
where
E: ExtendedExpression,
I: SemanticContextInstruction,
{
fn default() -> Self {
Self::new()
}
}
impl<E, I> State<E, I>
where
E: ExtendedExpression,
I: SemanticContextInstruction,
{
/// Init new `State`
#[must_use]
pub fn new() -> Self {
Self {
global: GlobalState {
functions: HashMap::new(),
types: HashMap::new(),
constants: HashMap::new(),
context: SemanticStack::new(),
},
context: Vec::new(),
errors: Vec::new(),
phantom: PhantomData,
}
}
/// Add error to Semantic `Errors State`
fn add_error(&mut self, err: error::StateErrorResult) {
self.errors.push(err);
}
/// Add `State context` with body state context block
fn add_state_context(&mut self, state_body: Rc<RefCell<BlockState<I>>>) {
self.context.push(state_body);
}
/// Check is value type exists in `Global State`.
/// `Primitive` type always return true. For other cases if type doesn't
/// exist in `Global State`, add errors to `Error State` and return `false` result.
fn check_type_exists(
&mut self,
type_name: &Type,
val_name: &impl ToString,
location: &impl GetLocation,
) -> bool {
if let Type::Primitive(_) = type_name {
return true;
}
if !self.global.types.contains_key(&type_name.name()) {
self.add_error(error::StateErrorResult::new(
error::StateErrorKind::TypeNotFound,
val_name.to_string(),
location.location(),
));
return false;
}
true
}
/// Run semantic analyzer that covers all flow for AST.
/// It's do not return any results, but fill results fir the `Semantic State`.
///
pub fn run(&mut self, data: &ast::Main<'_, E>) {
// Execute each kind of analyzing and return errors data.
// For functions - fetch only declaration for fast-forward
// identification for using it in functions body.
// First pass is Imports and Types
for main in data {
match main {
ast::MainStatement::Import(import) => self.import(import),
ast::MainStatement::Types(types) => self.types(types),
_ => (),
}
}
// Declaration pass for Constants and Functions
for main in data {
match main {
ast::MainStatement::Constant(constant) => self.constant(constant),
ast::MainStatement::Function(function) => self.function_declaration(function),
_ => (),
}
}
// After getting all functions declarations, fetch only functions body
for main in data {
if let ast::MainStatement::Function(function) = main {
self.function_body(function);
}
}
}
/// Import analyzer (TBD)
#[allow(clippy::unused_self, clippy::unnecessary_wraps)]
pub fn import(&self, data: &ast::ImportPath<'_>) {
if !data.is_empty() {
let _name = data[0].name();
}
}
/// Types declaration analyzer. Add types to `Global State`.
/// Currently only one type kind: Structs. And types can't be part of
/// the `Block State`.
pub fn types(&mut self, data: &ast::StructTypes<'_>) {
if self.global.types.contains_key(&data.name().into()) {
self.add_error(error::StateErrorResult::new(
error::StateErrorKind::TypeAlreadyExist,
data.name(),
data.location(),
));
return;
}
let struct_type = Type::Struct(data.clone().into());
self.global.types.insert(struct_type.name(), struct_type);
self.global.context.types(data.clone().into());
}
/// Check constant value expression.
/// If expression contains `Constant` check is constant exists.
/// Values doesn't check as it's just `Primitive Values`.
/// Also check all expression tree branches.
/// If `ConstantValue` doesn't exist add error to `Error State` and `return` false result.
pub fn check_constant_value_expression(
&mut self,
data: &Option<(ast::ExpressionOperations, Box<ast::ConstantExpression<'_>>)>,
) -> bool {
// For constant expression skip ExpressionOperations
if let Some((_, child_data)) = data {
// Check only Constant value
match child_data.value.clone() {
// Check is ConstantValue already exist in global state
ast::ConstantValue::Constant(const_name) => {
if !self
.global
.constants
.contains_key(&const_name.clone().into())
{
self.add_error(error::StateErrorResult::new(
error::StateErrorKind::ConstantNotFound,
const_name.name(),
const_name.location(),
));
return false;
}
self.check_constant_value_expression(&child_data.operation)
}
ast::ConstantValue::Value(_) => true,
}
} else {
true
}
}
/// Constant analyzer. Add it to `Global State`, because constants
/// can be only global for `Semantic state`, not for `Block state`.
pub fn constant(&mut self, data: &ast::Constant<'_>) {
if self.global.constants.contains_key(&data.name().into()) {
self.add_error(error::StateErrorResult::new(
error::StateErrorKind::ConstantAlreadyExist,
data.name(),
data.location(),
));
return;
}
if !self.check_constant_value_expression(&data.constant_value.operation) {
return;
}
let const_val: Constant = data.clone().into();
if !self.check_type_exists(&const_val.constant_type, &const_val.name, data) {
return;
}
self.global
.constants
.insert(const_val.name.clone(), const_val.clone());
self.global.context.constant(const_val);
}
/// Function declaration analyze. Add it to Global State/M
pub fn function_declaration(&mut self, data: &ast::FunctionStatement<'_, E>) {
if self.global.functions.contains_key(&data.name().into()) {
self.add_error(error::StateErrorResult::new(
error::StateErrorKind::FunctionAlreadyExist,
data.name(),
data.location(),
));
return;
}
let func_decl: FunctionStatement = data.clone().into();
let mut force_quite =
!self.check_type_exists(&func_decl.result_type, &func_decl.name, data);
// Fetch parameters and check types
let parameters = func_decl
.parameters
.iter()
.map(|p| {
force_quite = force_quite || !self.check_type_exists(&p.parameter_type, p, data);
p.parameter_type.clone()
})
.collect();
// Force quite if errors
if force_quite {
return;
}
self.global.functions.insert(
data.name().into(),
Function {
inner_name: func_decl.name,
inner_type: func_decl.result_type,
parameters,
},
);
self.global
.context
.function_declaration(data.clone().into());
}
/// Init function parameters.
/// It's init function parameters as values, same as let-binding.
/// And add instructions to `SemanticStack`.
fn init_func_params(
&mut self,
function_state: &Rc<RefCell<BlockState<I>>>,
fn_params: &Vec<ast::FunctionParameter<'_>>,
) {
for fn_param in fn_params {
let func_param: FunctionParameter = fn_param.clone().into();
let arg_name = func_param.clone().to_string();
// Find value in current state and parent states
let value = function_state
.borrow()
.get_value_name(&arg_name.clone().into());
// Calculate `inner_name` as unique for current and all parent states
let inner_name: InnerValueName = if value.is_none() {
// if value not found in all states check and set
// `inner_value` from value name
// NOTE: value number not incremented
arg_name.clone().into()
} else {
// Function parameter name can't be with the same name.
// Produce error
self.add_error(error::StateErrorResult::new(
error::StateErrorKind::FunctionArgumentNameDuplicated,
arg_name,
CodeLocation::new(1, 1),
));
return;
};
// Set value parameters
let value = Value {
inner_name: inner_name.clone(),
inner_type: func_param.parameter_type.clone(),
mutable: false,
alloca: false,
malloc: false,
};
// Value inserted only to current state by Value name and Value data
function_state
.borrow_mut()
.values
.insert(arg_name.into(), value.clone());
// Set `inner_name` to current state and all parent states
function_state
.borrow_mut()
.set_inner_value_name(&inner_name);
function_state.borrow_mut().function_arg(value, func_param);
}
}
/// Function body analyze.
/// It is basic execution entity for program flow.
/// It's operate sub analyze for function elements. It's contain
/// Body State for current and child states.
pub fn function_body(&mut self, data: &ast::FunctionStatement<'_, E>) {
// Init empty function body state
let body_state = Rc::new(RefCell::new(BlockState::new(None)));
self.add_state_context(body_state.clone());
// Init function parameters - add to SemanticStackContext
self.init_func_params(&body_state, &data.parameters);
// Flag to indicate is function return called
let mut return_is_called = false;
// Fetch function elements and gather errors
for body in &data.body {
if return_is_called {
self.add_error(error::StateErrorResult::new(
error::StateErrorKind::ForbiddenCodeAfterReturnDeprecated,
format!("{body:?}"),
CodeLocation::new(1, 1),
));
}
match body {
ast::BodyStatement::LetBinding(bind) => {
self.let_binding(bind, &body_state);
}
ast::BodyStatement::Binding(bind) => {
self.binding(bind, &body_state);
}
ast::BodyStatement::FunctionCall(fn_call) => {
self.function_call(fn_call, &body_state);
}
ast::BodyStatement::If(if_condition) => {
self.if_condition(if_condition, &body_state, &None, None);
}
ast::BodyStatement::Loop(loop_statement) => {
self.loop_statement(loop_statement, &body_state);
}
ast::BodyStatement::Expression(expression)
| ast::BodyStatement::Return(expression) => {
let expr_result = self.expression(expression, &body_state);
let expr: Expression = expression.clone().into();
// Check is return statement previously called
if return_is_called {
self.add_error(error::StateErrorResult::new(
error::StateErrorKind::ReturnAlreadyCalled,
expr.to_string(),
expression.location(),
));
}
if let Some(res) = expr_result {
// Check expression type and do not exist from flow
self.check_type_exists(&res.expr_type, &expr, expression);
let fn_ty: Type = data.result_type.clone().into();
if fn_ty != res.expr_type {
self.add_error(error::StateErrorResult::new(
error::StateErrorKind::WrongReturnType,
expr.to_string(),
expression.location(),
));
}
return_is_called = true;
// Check is state contain flag of manual
// return from other states, for example:
// if-flow, loop-flow
if body_state.borrow().manual_return {
// First we put expression return calculation for case when
// before in the state was return statement. So construct
// return expression and jump to return label, set return
// label and invoke after that read `return` value from all
// previous returns and invoke return instruction itself.
body_state
.borrow_mut()
.expression_function_return_with_label(res);
} else {
body_state.borrow_mut().expression_function_return(res);
}
}
}
}
}
// Check is function contain return
if !return_is_called {
self.add_error(error::StateErrorResult::new(
error::StateErrorKind::ReturnNotFound,
String::new(),
data.location(),
));
}
}
/// # Let-binding statement
/// Analyze let-binding statement:
/// 1. Let value bind from expression. First should be analysed
/// `expression` for binding value.
/// 2. Generate value for current state. Special field `inner_name`
/// that used as name for `Codegen` should be unique in current
/// state and for all parent states. For that `inner_name` the
/// inner value name counter incremented.
/// 3. Set `Value` parameters: `inner_name`, type and allocation status
/// 4. Insert value to current values state map: value `name` -> `Data`
/// 5. Store `inner_name` in current and parent states
/// 6. Codegen
pub fn let_binding(
&mut self,
data: &ast::LetBinding<'_, E>,
function_state: &Rc<RefCell<BlockState<I>>>,
) {
// Call value analytics before putting let-value to state
let Some(expr_result) = self.expression(&data.value, function_state) else {
return;
};
let let_data: LetBinding = data.clone().into();
if let Some(ty) = &let_data.value_type {
if &expr_result.expr_type != ty {
self.add_error(error::StateErrorResult::new(
error::StateErrorKind::WrongLetType,
let_data.to_string(),
data.location(),
));
return;
}
}
let let_ty = expr_result.expr_type.clone();
// Find value in current state and parent states
let value = function_state.borrow().get_value_name(&let_data.name);
// Calculate `inner_name` as unique for current and all parent states
let inner_name = value.map_or_else(
|| {
// if value not found in all states check and set
// `inner_value` from value name
function_state
.borrow()
.get_next_inner_name(&let_data.name.clone().into())
},
|val| {
// Increment inner value name counter for shadowed variable
// and check variable inner_name for and inner_values in current state
function_state.borrow().get_next_inner_name(&val.inner_name)
},
);
// Set value parameters
let value = Value {
inner_name: inner_name.clone(),
inner_type: let_ty,
mutable: let_data.mutable,
alloca: false,
malloc: false,
};
// Value inserted only to current state by Value name and Value data
function_state
.borrow_mut()
.values
.insert(let_data.name, value.clone());
// Set `inner_name` to current state and all parent states
function_state
.borrow_mut()
.set_inner_value_name(&inner_name);
function_state.borrow_mut().let_binding(value, expr_result);
}
/// # Binding statement
/// Analyze binding statement for mutable variables:
/// 1. Bind from expression. First should be analysed
/// `expression` for binding value.
/// 2. Read value for current state.
/// 3. Update value to current values state map: value `name` -> `Data`
/// 4. Codegen with Store action
pub fn binding(
&mut self,
data: &ast::Binding<'_, E>,
function_state: &Rc<RefCell<BlockState<I>>>,
) {
// Call value analytics before putting let-value to state
let Some(expr_result) = self.expression(&data.value, function_state) else {
return;
};
let bind_data: Binding = data.clone().into();
// Find value in current state and parent states
let Some(value) = function_state.borrow().get_value_name(&bind_data.name) else {
self.add_error(error::StateErrorResult::new(
error::StateErrorKind::ValueNotFound,
bind_data.to_string(),
data.location(),
));
return;
};
// Check is value mutable
if !value.mutable {
self.add_error(error::StateErrorResult::new(
error::StateErrorKind::ValueIsNotMutable,
bind_data.to_string(),
data.location(),
));
return;
}
function_state.borrow_mut().binding(value, expr_result);
}
/// # Function-call
/// Call function with function parameters arguments. Arguments is
/// expressions.
/// 1. Check is current function name exists in global state of functions
/// name.
/// 2. Analyse expressions for function parameters
/// 3. Inc register
/// 4. Generate codegen
/// Codegen store always result to register even for void result.
///
/// ## Errors
/// Return error if function name doesn't exist in global state
pub fn function_call(
&mut self,
data: &ast::FunctionCall<'_, E>,
body_state: &Rc<RefCell<BlockState<I>>>,
) -> Option<Type> {
let func_call_data: FunctionCall = data.clone().into();
// Check is function exists in global functions stat
let Some(func_data) = self.global.functions.get(&func_call_data.name).cloned() else {
self.add_error(error::StateErrorResult::new(
error::StateErrorKind::FunctionNotFound,
func_call_data.to_string(),
data.location(),
));
return None;
};
let fn_type = func_data.inner_type.clone();
// Analyse function parameters expressions, check their types
// and set result to array
let mut params: Vec<ExpressionResult> = vec![];
for (i, expr) in data.parameters.iter().enumerate() {
// Types checked in expression, so we don't need additional check
let expr_result = self.expression(expr, body_state)?;
if expr_result.expr_type != func_data.parameters[i] {
self.add_error(error::StateErrorResult::new(
error::StateErrorKind::FunctionParameterTypeWrong,
expr_result.expr_type.to_string(),
data.location(),
));
continue;
}
params.push(expr_result);
}
// Result of function call is stored to register
body_state.borrow_mut().inc_register();
let last_register_number = body_state.borrow().last_register_number;
// Store always result to register even for void result
body_state
.borrow_mut()
.call(func_data, params, last_register_number);
Some(fn_type)
}
/// # condition-expression
/// Analyse condition operations.
/// ## Return
/// Return result register of `condition-expression` calculation.
pub fn condition_expression(
&mut self,
data: &ast::ExpressionLogicCondition<'_, E>,
function_body_state: &Rc<RefCell<BlockState<I>>>,
) -> u64 {
// Analyse left expression of left condition
let left_expr = &data.left.left;
let left_res = self.expression(left_expr, function_body_state);
// Analyse right expression of left condition
let right_expr = &data.left.right;
let right_res = self.expression(right_expr, function_body_state);
// If some of the `left` or `right` expression is empty just return with error in the state
let (Some(left_res), Some(right_res)) = (left_res.clone(), right_res.clone()) else {
self.add_error(error::StateErrorResult::new(
error::StateErrorKind::ConditionIsEmpty,
format!("left={left_res:?}, right={right_res:?}"),
data.left.left.location(),
));
return function_body_state.borrow().last_register_number;
};
// Currently strict type comparison
if left_res.expr_type != right_res.expr_type {
self.add_error(error::StateErrorResult::new(
error::StateErrorKind::ConditionExpressionWrongType,
left_res.expr_type.to_string(),
data.left.left.location(),
));
return function_body_state.borrow().last_register_number;
}
if let Type::Primitive(_) = left_res.expr_type {
} else {
self.add_error(error::StateErrorResult::new(
error::StateErrorKind::ConditionExpressionNotSupported,
left_res.expr_type.to_string(),
data.left.left.location(),
));
return function_body_state.borrow().last_register_number;
}
// Increment register
function_body_state.borrow_mut().inc_register();
let register_number = function_body_state.borrow_mut().last_register_number;
// Codegen for left condition and set result to register
function_body_state.borrow_mut().condition_expression(
left_res,
right_res,
data.left.condition.clone().into(),
register_number,
);
// Analyze right condition
if let Some(right) = &data.right {
let left_register_result = function_body_state.borrow_mut().last_register_number;
// Analyse recursively right part of condition
let right_register_result = self.condition_expression(&right.1, function_body_state);
// Increment register
function_body_state.borrow_mut().inc_register();
let register_number = function_body_state.borrow_mut().last_register_number;
// Stategen for logical condition for: left [LOGIC-OP] right
// The result generated from registers, and stored to
// new register
function_body_state.borrow_mut().logic_condition(
right.0.clone().into(),
left_register_result,
right_register_result,
register_number,
);
}
function_body_state.borrow_mut().last_register_number
}
/// # If-condition body
/// Analyze body for ant if condition:
/// - if, else, if-else
/// NOTE: `label_end` - is always already exists
/// ## Return
/// Return body statement "return" status
pub fn if_condition_body(
&mut self,
body: &[ast::IfBodyStatement<'_, E>],
if_body_state: &Rc<RefCell<BlockState<I>>>,
label_end: &LabelName,
label_loop: Option<(&LabelName, &LabelName)>,
) -> bool {
let mut return_is_called = false;
for body in body {
if return_is_called {
self.add_error(error::StateErrorResult::new(
error::StateErrorKind::ForbiddenCodeAfterReturnDeprecated,
format!("{body:?}"),
CodeLocation::new(1, 1),
));
}
match body {
ast::IfBodyStatement::LetBinding(bind) => {
self.let_binding(bind, if_body_state);
}
ast::IfBodyStatement::Binding(bind) => {
self.binding(bind, if_body_state);
}
ast::IfBodyStatement::FunctionCall(fn_call) => {
self.function_call(fn_call, if_body_state);
}
ast::IfBodyStatement::If(if_condition) => {
self.if_condition(
if_condition,
if_body_state,
&Some(label_end.clone()),
label_loop,
);
}
ast::IfBodyStatement::Loop(loop_statement) => {
self.loop_statement(loop_statement, if_body_state);
}
ast::IfBodyStatement::Return(expression) => {
let expr_result = self.expression(expression, if_body_state);
if let Some(res) = expr_result {
// Jump to return label in codegen and set return
// status to indicate function, that it's manual
// return
if_body_state.borrow_mut().jump_function_return(res);
if_body_state.borrow_mut().set_return();
return_is_called = true;
};
}
}
}
return_is_called
}
/// # If-condition loop body
/// Analyze body for ant if condition:
/// - if, else, if-else
/// ## Return
/// Return body statement "return" status
pub fn if_condition_loop_body(
&mut self,
body: &[ast::IfLoopBodyStatement<'_, E>],
if_body_state: &Rc<RefCell<BlockState<I>>>,
label_if_end: &LabelName,
label_loop_start: &LabelName,
label_loop_end: &LabelName,
) -> bool {
let mut return_is_called = false;
let mut break_is_called = false;
let mut continue_is_called = false;
for body in body {
if return_is_called {
self.add_error(error::StateErrorResult::new(
error::StateErrorKind::ForbiddenCodeAfterReturnDeprecated,
format!("{body:?}"),
CodeLocation::new(1, 1),
));
}
if break_is_called {
self.add_error(error::StateErrorResult::new(
error::StateErrorKind::ForbiddenCodeAfterBreakDeprecated,
format!("{body:?}"),
CodeLocation::new(1, 1),
));
}
if continue_is_called {
self.add_error(error::StateErrorResult::new(
error::StateErrorKind::ForbiddenCodeAfterContinueDeprecated,
format!("{body:?}"),
CodeLocation::new(1, 1),
));
}
match body {
ast::IfLoopBodyStatement::LetBinding(bind) => {
self.let_binding(bind, if_body_state);
}
ast::IfLoopBodyStatement::Binding(bind) => {
self.binding(bind, if_body_state);
}
ast::IfLoopBodyStatement::FunctionCall(fn_call) => {
self.function_call(fn_call, if_body_state);
}
ast::IfLoopBodyStatement::If(if_condition) => {
self.if_condition(
if_condition,
if_body_state,
&Some(label_if_end.clone()),
Some((label_loop_start, label_loop_end)),
);
}
ast::IfLoopBodyStatement::Loop(loop_statement) => {
self.loop_statement(loop_statement, if_body_state);
}
ast::IfLoopBodyStatement::Return(expression) => {
let expr_result = self.expression(expression, if_body_state);
if let Some(res) = expr_result {
// Jump to return label in codegen and set return
// status to indicate function, that it's manual
// return
if_body_state.borrow_mut().jump_function_return(res);
if_body_state.borrow_mut().set_return();
return_is_called = true;
}
}
ast::IfLoopBodyStatement::Continue => {
continue_is_called = true;
// Skip next loop step and jump to the start
// of loop
if_body_state.borrow_mut().jump_to(label_loop_start.clone());
}
ast::IfLoopBodyStatement::Break => {
break_is_called = true;
// Break loop and jump to the end of loop
if_body_state.borrow_mut().jump_to(label_loop_end.clone());
}
}
}
return_is_called
}
/// # If conditions calculations
/// Calculate conditions for if-condition. It can contain
/// simple and logic conditions.
pub fn if_condition_calculation(
&mut self,
condition: &ast::IfCondition<'_, E>,
if_body_state: &Rc<RefCell<BlockState<I>>>,
label_if_begin: &LabelName,
label_if_else: &LabelName,
label_if_end: &LabelName,
is_else: bool,
) {
// Analyse if-conditions
match condition {
// if condition represented just as expression
ast::IfCondition::Single(expr) => {
// Calculate expression for single if-condition expression
let Some(expr_result) = self.expression(expr, if_body_state) else {
return;
};
// State for if-condition from expression and if-body start
if is_else {
if_body_state.borrow_mut().if_condition_expression(
expr_result,
label_if_begin.clone(),
label_if_else.clone(),
);
} else {
if_body_state.borrow_mut().if_condition_expression(
expr_result,
label_if_begin.clone(),
label_if_end.clone(),
);
}
}
// If condition contains logic condition expression
ast::IfCondition::Logic(expr_logic) => {
// Analyse if-condition logic
let result_register = self.condition_expression(expr_logic, if_body_state);
// State for if-condition-logic with if-body start
if is_else {
if_body_state.borrow_mut().if_condition_logic(
label_if_begin.clone(),
label_if_else.clone(),
result_register,
);
} else {
if_body_state.borrow_mut().if_condition_logic(
label_if_begin.clone(),
label_if_end.clone(),
result_register,
);
}
}
}
}
/// # If-condition
/// Analyzing includes all variants for if statements:
/// 1. if
/// 2. if-else
/// 3. if-else-if
/// It creates own state, with parent function-state. in that case
/// if-state independent from parent state, but csn get access to
/// parent state.
/// If condition can't contain `else` and `if-else` on the
/// same time.
///
/// Special case for `label_end` - it should be set from previous
/// context, and main goal is to end all of if-condition nodes in
/// the same flow with same `if-end` label. It's especially important
/// for `else-if` condition.
///
/// ## Panics
/// `label_loop` is must be set, it's special case for the Loop,
/// when `label_loop` should always be set. If it doesn't set, it's
/// unexpected behavior and program algorithm error
pub fn if_condition(
&mut self,
data: &ast::IfStatement<'_, E>,
function_body_state: &Rc<RefCell<BlockState<I>>>,
label_end: &Option<LabelName>,
label_loop: Option<(&LabelName, &LabelName)>,
) {
// It can't contain `else` and `if-else` on the same time
if let (Some(_), Some(stm)) = (&data.else_statement, &data.else_if_statement) {
self.add_error(error::StateErrorResult::new(
error::StateErrorKind::IfElseDuplicated,
String::from("if-condition"),
stm.location(),
));
}
// Create state for if-body, from parent function state because
// if-state can contain sub-state, that can be independent from parent
// state
let if_body_state = Rc::new(RefCell::new(BlockState::new(Some(
function_body_state.clone(),
))));
function_body_state
.borrow_mut()
.set_child(if_body_state.clone());
// Get labels name for if-begin, and if-end
let label_if_begin = if_body_state
.borrow_mut()
.get_and_set_next_label(&"if_begin".to_string().into());
let label_if_else = if_body_state
.borrow_mut()
.get_and_set_next_label(&"if_else".to_string().into());
// Set if-end label from previous context
let label_if_end = label_end.clone().map_or_else(
|| {
if_body_state
.borrow_mut()
.get_and_set_next_label(&"if_end".to_string().into())
},
|label| label,
);
// To set if-end as single return point check is it previously set
let is_set_label_if_end = label_end.is_some();
let is_else = data.else_statement.is_some() || data.else_if_statement.is_some();
// Analyse if-conditions
self.if_condition_calculation(
&data.condition,
&if_body_state,
&label_if_begin,
&label_if_else,
&label_if_end,
is_else,
);
//== If condition main body
// Set if-begin label
if_body_state.borrow_mut().set_label(label_if_begin);
// Analyze if-conditions body kind.
// Return flag for current body state, excluding children return claims
let return_is_called = match &data.body {
ast::IfBodyStatements::If(body) => {
// Analyze if-statement body
self.if_condition_body(body, &if_body_state, &label_if_end, label_loop)
}
ast::IfBodyStatements::Loop(body) => {
// It's special case for the Loop, when `label_loop` should always be set.
// If it doesn't set, it's unexpected behavior and program algorithm error
let (label_loop_start, label_loop_end) =
label_loop.expect("loop label should be set");
// Analyze if-loop-statement body
self.if_condition_loop_body(
body,
&if_body_state,
&label_if_end,
label_loop_start,
label_loop_end,
)
}
};
// Codegen for jump to if-end statement - return to program flow.
// If return is set do not add jump-to-end label.
if !return_is_called {
if_body_state.borrow_mut().jump_to(label_if_end.clone());
}
// Check else statements: else, else-if
if is_else {
// Set if-else label
if_body_state.borrow_mut().set_label(label_if_else);
// Analyse if-else body: data.else_statement
if let Some(else_body) = &data.else_statement {
// if-else has own state, different from if-state
let if_else_body_state = Rc::new(RefCell::new(BlockState::new(Some(
function_body_state.clone(),
))));
function_body_state
.borrow_mut()
.set_child(if_else_body_state.clone());
let return_is_called = match else_body {
ast::IfBodyStatements::If(body) => {
// Analyze if-statement body
self.if_condition_body(body, &if_else_body_state, &label_if_end, label_loop)
}
ast::IfBodyStatements::Loop(body) => {
let (label_loop_start, label_loop_end) =
label_loop.expect("label should be set");
// Analyze if-loop-statement body
self.if_condition_loop_body(
body,
&if_else_body_state,
&label_if_end,
label_loop_start,
label_loop_end,
)
}
};
// Codegen for jump to if-end statement -return to program flow
// If return is set do not add jump-to-end label.
if !return_is_called {
if_body_state.borrow_mut().jump_to(label_if_end.clone());
}
} else if let Some(else_if_statement) = &data.else_if_statement {
// Analyse else-if statement
// Set `label_if_end` to indicate single if-end point
self.if_condition(
else_if_statement,
function_body_state,
&Some(label_if_end.clone()),
label_loop,
);
}
}
// End label for all if statement, should be set only once
if !is_set_label_if_end {
if_body_state.borrow_mut().set_label(label_if_end);
}
}
/// # Loop
/// Loop statement contains logic:
/// - jump to loop
/// - loop body
/// - end of loop
/// - return, break, continue
pub fn loop_statement(
&mut self,
data: &[ast::LoopBodyStatement<'_, E>],
function_body_state: &Rc<RefCell<BlockState<I>>>,
) {
// Create state for loop-body, from parent func state because
// loop-state can contain sub-state, that can be independent from parent
// state
let loop_body_state = Rc::new(RefCell::new(BlockState::new(Some(
function_body_state.clone(),
))));
function_body_state
.borrow_mut()
.set_child(loop_body_state.clone());
// Get labels name for loop-begin, and loop-end
let label_loop_begin = loop_body_state
.borrow_mut()
.get_and_set_next_label(&"loop_begin".to_string().into());
let label_loop_end = loop_body_state
.borrow_mut()
.get_and_set_next_label(&"loop_end".to_string().into());
loop_body_state
.borrow_mut()
.jump_to(label_loop_begin.clone());
loop_body_state
.borrow_mut()
.set_label(label_loop_begin.clone());
let mut return_is_called = false;
let mut break_is_called = false;
let mut continue_is_called = false;
for body in data {
if return_is_called {
self.add_error(error::StateErrorResult::new(
error::StateErrorKind::ForbiddenCodeAfterReturnDeprecated,
format!("{body:?}"),
CodeLocation::new(1, 1),
));
}
if break_is_called {
self.add_error(error::StateErrorResult::new(
error::StateErrorKind::ForbiddenCodeAfterBreakDeprecated,
format!("{body:?}"),
CodeLocation::new(1, 1),
));
}
if continue_is_called {
self.add_error(error::StateErrorResult::new(
error::StateErrorKind::ForbiddenCodeAfterContinueDeprecated,
format!("{body:?}"),
CodeLocation::new(1, 1),
));
}
match body {
ast::LoopBodyStatement::LetBinding(bind) => {
self.let_binding(bind, &loop_body_state);
}
ast::LoopBodyStatement::Binding(bind) => {
self.binding(bind, &loop_body_state);
}
ast::LoopBodyStatement::FunctionCall(fn_call) => {
self.function_call(fn_call, &loop_body_state);
}
ast::LoopBodyStatement::If(if_condition) => self.if_condition(
if_condition,
&loop_body_state,
&None,
Some((&label_loop_begin, &label_loop_end)),
),
ast::LoopBodyStatement::Loop(loop_statement) => {
self.loop_statement(loop_statement, &loop_body_state);
}
ast::LoopBodyStatement::Return(expression) => {
let expr_result = self.expression(expression, &loop_body_state);
if let Some(res) = expr_result {
// Jump to return label in codegen and set return
// status to indicate function, that it's manual
// return
loop_body_state.borrow_mut().jump_function_return(res);
loop_body_state.borrow_mut().set_return();
return_is_called = true;
}
}
ast::LoopBodyStatement::Break => {
// Break loop and jump to the end of loop
loop_body_state.borrow_mut().jump_to(label_loop_end.clone());
break_is_called = true;
}
ast::LoopBodyStatement::Continue => {
// Skip next loop step and jump to the start
// of loop
loop_body_state
.borrow_mut()
.jump_to(label_loop_begin.clone());
continue_is_called = true;
}
}
}
// If return is called do not set loop-specific instructions
if !return_is_called {
// Because it's loop jump to loop begin
loop_body_state
.borrow_mut()
.jump_to(label_loop_begin.clone());
// Loop ending
loop_body_state.borrow_mut().set_label(label_loop_end);
}
}
#[allow(clippy::doc_markdown)]
/// ## Expression
/// Is basic entity for state operation and state usage.
/// State correctness verified by expressions call.
/// Expressions folded by operations priority. For that
/// expressions tree folded each leaf of tree by priority operation
/// level. The most striking image is bracketing an expression with
/// a higher priority, and build tree based on that.
///
/// ## Return
/// `PrimitiveValue` | `TmpRegister`
///
/// Possible algorithm conditions:
/// 1. PrimitiveValue -> PrimitiveValue
/// 2. Value -> load -> TmpRegister
/// 3. FuncCall -> call -> TmpRegister
/// 4. Operations
/// 4.1. PrimitiveValue
/// - PrimitiveValue -> tmp = OP val1, val2 -> TmpRegister
/// - Value -> tmp1 = load -> OP val1, tmp1 -> TmpRegister
/// - FuncCAll -> tmp1 = call -> OP val1, tmp1 -> TmpRegister
/// 4.2. TmpRegister (with name tmp1)
/// - PrimitiveValue -> tmp2 = OP tmp1, val1 -> TmpRegister
/// - Value -> tmp2 = load -> tmp3 = OP tmp1, tmp2 -> TmpRegister
/// - FuncCall -> tmp2 = call -> tmp3 = OP tmp1, tmp2 -> TmpRegister
/// 4.3. Operations -> recursively invoke 4.2.
pub fn expression(
&mut self,
data: &ast::Expression<'_, E>,
body_state: &Rc<RefCell<BlockState<I>>>,
) -> Option<ExpressionResult> {
// Fold expression operations priority
let expr = Self::expression_operations_priority(data.clone());
// To analyze expression first time, we set:
// left_value - as None
// operation - as None
// And basic expression value is `right_value`, because
// it can contain sub-operations (`left_value` don't contain
// and contain Expression result)
self.expression_operation(None, &expr, None, body_state)
}
/// Expression operation semantic logic:
/// `OP(lhs, rhs)`
/// Left-value contains optional Expression result for left side
/// of expression.
#[allow(clippy::too_many_lines)]
pub fn expression_operation(
&mut self,
left_value: Option<&ExpressionResult>,
right_expression: &ast::Expression<'_, E>,
op: Option<&ast::ExpressionOperations>,
body_state: &Rc<RefCell<BlockState<I>>>,
) -> Option<ExpressionResult> {
// Get right side value from expression.
// If expression return error immediately return error
// because next analyzer should use success result.
let right_value = match &right_expression.expression_value {
// Check is expression Value entity
ast::ExpressionValue::ValueName(value) => {
// Get value from block state
let value_from_state = body_state.borrow_mut().get_value_name(&value.name().into());
// Register contains result
body_state.borrow_mut().inc_register();
let last_register_number = body_state.borrow().last_register_number;
// First check value in body state
let ty = if let Some(val) = value_from_state {
body_state
.borrow_mut()
.expression_value(val.clone(), last_register_number);
val.inner_type
} else if let Some(const_val) = self.global.constants.get(&value.name().into()) {
body_state
.borrow_mut()
.expression_const(const_val.clone(), last_register_number);
const_val.constant_type.clone()
} else {
// If value doesn't exist in State or as Constant
self.add_error(error::StateErrorResult::new(
error::StateErrorKind::ValueNotFound,
value.name(),
value.location(),
));
return None;
};
// Return result as register
ExpressionResult {
expr_type: ty,
expr_value: ExpressionResultValue::Register(
body_state.borrow().last_register_number,
),
}
}
// Check is expression primitive value
ast::ExpressionValue::PrimitiveValue(value) => {
// Just return primitive value itself
ExpressionResult {
expr_type: value.get_type().into(),
expr_value: ExpressionResultValue::PrimitiveValue(value.clone().into()),
}
}
// Check is expression Function call entity
ast::ExpressionValue::FunctionCall(fn_call) => {
// We shouldn't increment register, because it's
// inside `self.function_call`.
// And result of function always stored in register.
let func_call_ty = self.function_call(fn_call, body_state)?;
// Return result as register
body_state.borrow_mut().inc_register();
ExpressionResult {
expr_type: func_call_ty,
expr_value: ExpressionResultValue::Register(
body_state.borrow().last_register_number,
),
}
}
ast::ExpressionValue::StructValue(value) => {
let struct_value: ExpressionStructValue = value.clone().into();
// Can be only Value from state, not constant
// Get value from block state
let val = body_state
.borrow_mut()
.get_value_name(&struct_value.name)
.or_else(|| {
// If value doesn't exist
self.add_error(error::StateErrorResult::new(
error::StateErrorKind::ValueNotFound,
value.name.name(),
value.name.location(),
));
None
})?;
// Check is value type is struct
let ty = val.inner_type.get_struct().or_else(|| {
self.add_error(error::StateErrorResult::new(
error::StateErrorKind::ValueNotStruct,
value.name.name(),
value.name.location(),
));
None
})?;
// Check is type exists
if !self.check_type_exists(&val.inner_type, &value.name.name(), &value.name) {
return None;
}
if &Type::Struct(ty.clone()) != self.global.types.get(&val.inner_type.name())? {
self.add_error(error::StateErrorResult::new(
error::StateErrorKind::WrongExpressionType,
value.name.name(),
value.name.location(),
));
return None;
}
let attributes = ty
.attributes
.get(&struct_value.attribute)
.or_else(|| {
self.add_error(error::StateErrorResult::new(
error::StateErrorKind::ValueNotStructField,
value.name.name(),
value.name.location(),
));
None
})?
.clone();
// Register contains result
body_state.borrow_mut().inc_register();
let last_register_number = body_state.borrow().last_register_number;
body_state.borrow_mut().expression_struct_value(
val.clone(),
attributes.attr_index,
last_register_number,
);
body_state.borrow_mut().inc_register();
ExpressionResult {
expr_type: attributes.attr_type,
expr_value: ExpressionResultValue::Register(
body_state.borrow().last_register_number,
),
}
}
ast::ExpressionValue::Expression(expr) => {
// Subexpression should be analyzed independently
self.expression(expr, body_state)?
}
ast::ExpressionValue::ExtendedExpression(expr) => expr.expression(self, body_state),
};
// Check left expression side and generate expression operation code
let expression_result = if let (Some(left_value), Some(op)) = (left_value, op) {
if left_value.expr_type != right_value.expr_type {
self.add_error(error::StateErrorResult::new(
error::StateErrorKind::WrongExpressionType,
left_value.expr_type.to_string(),
right_expression.location(),
));
// Do not fetch other expression flow if type is wrong
return None;
}
// Expression operation is set to register
body_state.borrow_mut().inc_register();
let last_register_number = body_state.borrow().last_register_number;
// Call expression operation for: OP(left_value, right_value)
body_state.borrow_mut().expression_operation(
op.clone().into(),
left_value.clone(),
right_value.clone(),
last_register_number,
);
// Expression result value for Operations is always should be "register"
ExpressionResult {
expr_type: right_value.expr_type,
expr_value: ExpressionResultValue::Register(
body_state.borrow().last_register_number,
),
}
} else {
right_value
};
// Check is for right value contain next operation
if let Some((operation, expr)) = &right_expression.operation {
// Recursively call, where current Execution result set as left
// side expressionf
self.expression_operation(Some(&expression_result), expr, Some(operation), body_state)
} else {
Some(expression_result)
}
}
/// # Expression operation priority
/// Fold expression priority.
/// Pass expressions tree from max priority level to minimum
/// priority level. If expression priority for concrete branch
/// founded, it's folded to leaf (same as bracketing).
///
/// ## Return
/// New folded expressions tree.
fn expression_operations_priority(data: ast::Expression<'_, E>) -> ast::Expression<'_, E> {
let mut data = data;
for priority in (0..=MAX_PRIORITY_LEVEL_FOR_EXPRESSIONS).rev() {
data = Self::fetch_op_priority(data, priority);
}
data
}
/// Fetch expression operation priories and fold it.
/// Expressions folded by operations priority. For that expressions
/// tree folded each branch of tree to leaf by priority operation
/// level. The most striking image is bracketing an expression with
/// a higher priority, and build tree based on that.
///
/// For example: expr = expr1 OP1 expr2 - it has 2 branches
/// if expr2 contain subbranch (for example: `expr2 OP2 expr3`) we trying
/// to find priority level for current pass. And if `priority_level == OP1`
/// - fold it to leaf.
/// NOTICE: expr1 can't contain subbranches by design. So we pass
/// expression tree from left to right.
/// If priority level not equal, we just return income expression, or
/// if it has subbranch - launch fetching subbranch
fn fetch_op_priority(
data: ast::Expression<'_, E>,
priority_level: u8,
) -> ast::Expression<'_, E> {
// Check is expression contains right side with operation
if let Some((op, expr)) = data.clone().operation {
// Check is right expression contain subbranch (sub operation)
if let Some((next_op, next_expr)) = expr.operation.clone() {
// Check incoming expression operation priority level
if op.priority() == priority_level {
// Fold expression to leaf - creating new expression as value
let expression_value =
ast::ExpressionValue::Expression(Box::new(ast::Expression {
expression_value: data.expression_value,
operation: Some((
op,
Box::new(ast::Expression {
expression_value: expr.expression_value,
operation: None,
}),
)),
}));
// Fetch next expression branch
let new_expr = Self::fetch_op_priority(*next_expr, priority_level);
// Create new expression with folded `expression_value`
ast::Expression {
expression_value,
operation: Some((next_op, Box::new(new_expr))),
}
} else {
// If priority not equal for current level just
// fetch right side of expression for next branches
let new_expr =
if next_op.priority() > op.priority() && next_expr.operation.is_none() {
// Pack expression to leaf
ast::Expression {
expression_value: ast::ExpressionValue::Expression(expr),
operation: None,
}
} else {
Self::fetch_op_priority(*expr, priority_level)
};
// Rebuild expression tree
ast::Expression {
expression_value: data.expression_value,
operation: Some((op, Box::new(new_expr))),
}
}
} else {
data
}
} else {
data
}
}
}