secure_socket 0.0.11

A small encrypted wrapper around TCP.
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
use core::panic;
use std::fmt::Display;
use std::net::TcpStream;
use std::io::{Read, Write, BufReader, BufWriter};
use std::fs::File;

const RSA_BITS: usize = 2048;

use rand::distributions::OpenClosed01;
use rand::rngs::ThreadRng;
use rand::{Fill, RngCore};

use rsa::{PublicKey, RsaPrivateKey, RsaPublicKey, PaddingScheme};

use chacha20poly1305::{ChaCha20Poly1305, Key, Nonce, KeyInit};
use chacha20poly1305::aead::{Aead};

use chrono::Utc;

pub const BUF_LEN: usize = 1024;


#[derive(PartialEq)]
pub enum SocketRole {
    Client,
    Server
}

#[derive(Debug)]
pub enum Reason {
    Closed,
    Other,
    BadData,
    Interrupted,
}
impl Display for Reason {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        f.write_str(match *self {
            Reason::Closed => "Socket Closed",
            Reason::Other => "Socket Error: Other",
            Reason::BadData => "Socket Error: Bad Data",
            Reason::Interrupted => "Socket Error: Interrupted",
        })
    }
}


#[derive(Clone, Copy)]
#[repr(u8)]
enum PacketType {
    SendRSA = 0u8,
    SendKey = 1u8,
    FileData = 2u8,
    Metadata = 3u8,
    CloseCon = 4u8,
    KeyTest = 5u8,
    Good = 6u8,
    Bad = 7u8,
}
impl From<u8> for PacketType {
    fn from(raw: u8) -> Self {
        match raw {
            0 => Self::SendRSA,
            1 => Self::SendKey,
            2 => Self::FileData,
            3 => Self::Metadata,
            4 => Self::CloseCon,
            5 => Self::KeyTest,
            6 => Self::Good,
            7 => Self::Bad,
            _ => panic!("'{}' is not a valid variant of PacketType.", raw)
        }
    }
}

#[derive(Clone, Copy)]
struct PacketHeader {
    purpose: PacketType,
    data_len: u32
}
impl PacketHeader {
    fn to_bytes(&self) -> [u8; 5] {
        let mut to_return: [u8; 5] = [0u8; 5];
        to_return[0] = self.purpose as u8;
        to_return[1..=4].copy_from_slice(&self.data_len.to_le_bytes());

        to_return
    }

    fn from_bytes(raw: [u8; 5]) -> Option<PacketHeader> {
        let purpose: PacketType = raw[0].into();
        let data_len = u32::from_le_bytes(match raw[1..5].try_into() {
            Ok(v) => v,
            Err(e) => {
                println!("{}", e);
                return None
            }
        });

        Some(PacketHeader { purpose, data_len })
    }
}


pub struct SecureSocket {
    socket: TcpStream,
    rng: ThreadRng,
    cipher: ChaCha20Poly1305,
}

impl SecureSocket {
    #[allow(unused_must_use)]
    pub fn new (sock: TcpStream, role: SocketRole) -> Option<SecureSocket> {
        //! Create a brand spankin' new Secure Socket.
        //! 
        //! I believe the arguments are more or less self-explanatory, so I won't bother to explain them.

        #[allow(unused_mut)]  // It very definitely *does* need to be mutable
        let mut rng = rand::thread_rng();

        let mut ssocket = SecureSocket {
            socket: sock,
            rng,
            cipher: ChaCha20Poly1305::new(Key::from_slice(&[0u8; 32]))
        };

        ssocket.exchange_keys(role);

        return Some(ssocket);
    }

    fn exchange_keys (&mut self, role: SocketRole) {
        //! Exchange cryptographic keys.
        
        let public_key: RsaPublicKey;
        let private_key: RsaPrivateKey = match RsaPrivateKey::new(&mut self.rng, RSA_BITS) {
            Ok(v) => v,
            Err(e) => {
                eprintln!("Error initializing RSA private key: {}", e);
                self.close_conn();
                return
            }
        };
        if role == SocketRole::Server {  // Setup server socket
            let mut header_raw = [0u8; 5];
            match self.socket.read(&mut header_raw) {
                Ok(_) => {},
                Err(e) => {
                    println!("Unable to receive header: {}", e);
                    self.close_conn();
                    return;
                }
            }
            let data_len: usize = match match PacketHeader::from_bytes(header_raw) {  // Step 1: Convert header
                Some(v) => v,
                None => {
                    self.close_conn();
                    return;
                }
            }.data_len.try_into() {  // Step 2: Convert data_len from u32 to usize
                Ok(v) => v,
                Err(e) => {
                    println!("ERROR: Unable to convert packet header data: {}", e);
                    self.close_conn();
                    return;
                }
            };

            let mut pub_enc = vec![0u8; data_len];
            match self.socket.read_exact(&mut pub_enc) {
                Ok(_) => {},
                Err(e) => {
                    println!("ERROR: Unable to read public key: {}", e);
                    self.close_conn();
                    return;
                }
            }

            public_key = match rmp_serde::decode::from_slice(&pub_enc) {
                Ok(v) => v,
                Err(e) => {
                    println!("ERROR: Unable to deserialize public key: {}", e);
                    self.close_conn();
                    return;
                }
            }
        } else {  // Setup client socket
            public_key = RsaPublicKey::from(&private_key);
            let pub_enc = match rmp_serde::encode::to_vec(&public_key) {
                Ok(v) => v,
                Err(e) => {
                    println!("Unable to serialize public key: {}", e);
                    self.close_conn();
                    return;
                }
            };
            match self.socket.write(&PacketHeader {purpose: PacketType::SendRSA, data_len: pub_enc.len() as u32}.to_bytes()) {
                Ok(_) => {},
                Err(e) => {
                    println!("Unable to send public key: {}", e);
                    self.close_conn();
                    return;
                }
            };
            match self.socket.write(&pub_enc) {
                Ok(_) => {},
                Err(e) => {
                    println!("Unable to send public key: {}", e);
                    self.close_conn();
                    return;
                }
            }
        }

        

        let mut key = vec![0u8; 32];
        let padding = PaddingScheme::new_pkcs1v15_encrypt();
        if role == SocketRole::Server {  // Send symmetric key
            match key.try_fill(&mut self.rng){  // Create key raw data
                Ok(_) => {},
                Err(e) => {
                    println!("{}", e);
                    self.close_conn();
                    return;
                }
            }

            let enc: Vec<u8> = match public_key.encrypt(&mut self.rng, padding, &key[..]) {
                Ok(v) => v,
                Err(e) => {
                    println!("Unable to encrypt symmetric key: {}", e);
                    self.close_conn();
                    return;
                }
            };

            match self.socket.write(&enc){
                Ok(_) => {},
                Err(e) => {
                    println!("{}", e);
                    self.close_conn();
                    return;
                }
            }  // Send key data
        } else {  // Receive symmetric key
            let mut key_enc = vec![0u8; 256];  // Receive encrypted key
            match self.socket.read_exact(&mut key_enc) {
                Ok(_) => {},
                Err(e) => {
                    println!("ERROR: Unable to receive symmetric key data: {}", e);
                    self.close_conn();
                    return;
                }
            }

            key = match private_key.decrypt(padding, &key_enc) {
                Ok(v) => v,
                Err(e) => {
                    println!("Unable to decrypt symmetric key: {}", e);
                    self.close_conn();
                    return;
                }
            }  // Decrypt key
        }

        self.cipher = ChaCha20Poly1305::new(Key::from_slice(&key));           // Reinitialize cipher using key data

        if role == SocketRole::Server {
            match self.recv() {
                Ok(_) => println!("Test packet succeeded."),
                Err(e) => {
                    println!("Test packet FAILED: {}", e);
                    self.close_conn();
                    return;
                }
            }
        } else {
            let mut n = [0u8; 12];
            self.rng.fill_bytes(&mut n);
            let nonce = Nonce::from_slice(&n);
            let data = match  self.cipher.encrypt(nonce, b"HELLO".as_ref()) {
                Ok(v) => v,
                Err(e) => {
                    println!("Unable to encrypt test packet: {}", e);
                    self.close_conn();
                    return;
                }
            };
            
            let header = PacketHeader { purpose: PacketType::KeyTest, data_len: data.len() as u32 };
            match self.socket.write(&header.to_bytes()) {
                Ok(_) => {},
                Err(e) => {
                    println!("Unable to send test packet: {}", e);
                    self.close_conn();
                    return;
                }
            }
            match self.socket.write(&n) {
                Ok(_) => {},
                Err(e) => {
                    println!("Unable to send test packet nonce: {}", e);
                    self.close_conn();
                    return;
                }
            }
            match self.socket.write(&data) {
                Ok(_) => {},
                Err(e) => {
                    println!("Unable to send test packet: {}", e);
                    self.close_conn();
                    return;
                }
            }
        }
    }

    pub fn recv(&mut self) -> Result<String, Reason> {
        let mut header = [0u8; 5];
        match self.socket.read_exact(&mut header) {
            Ok(_) => {},
            Err(e) => {
                println!("{}", e);
                return Err(Reason::Other);
            }
        };
        let header = match PacketHeader::from_bytes(header) {
            Some(v) => v,
            None => {
                self.close_conn();
                println!("Unable to deserialize packet header.");
                return Err(Reason::BadData);
            }
        };

        match header.purpose {
            PacketType::KeyTest => {
                let mut nonce = [0u8; 12];
                self.socket.read(&mut nonce).unwrap();
                let nonce = Nonce::from_slice(&nonce);

                let mut data = vec![0u8; header.data_len.try_into().unwrap()];
                self.socket.read(&mut data).unwrap();
                let data: Vec<u8> = self.cipher.decrypt(&nonce, &*data).unwrap();
                
                if data != b"HELLO" {
                    self.socket.write(
                        &PacketHeader {
                            purpose: PacketType::Bad,
                            data_len: 0u32
                        }.to_bytes()
                    ).unwrap();
                    println!("The test packet was the imposter.");
                    println!(" - HELP: The received data is {}", String::from_utf8_lossy(&data));
                    return Err(Reason::BadData);
                } else {
                    self.socket.write(
                        &PacketHeader {
                            purpose: PacketType::Good,
                            data_len: 0u32
                        }.to_bytes()
                    ).unwrap();
                    return Ok(String::from("HELLO"));
                }
            },
            PacketType::CloseCon | PacketType::Bad | PacketType::Good | PacketType::SendRSA | PacketType::Metadata | PacketType::FileData => {
                // TODO Re-evaulate unused header types
                match self.socket.shutdown(std::net::Shutdown::Both) {
                    Ok(_) => {},
                    Err(e) => {
                        println!("{}", e);
                        return Err(Reason::Closed);
                    }
                };
            },
            PacketType::SendKey => {
                // This is a server socket, so it's being misused.
                self.close_conn();
                return Err(Reason::BadData);
            },
        }

        todo!()
    }

    fn get_hostname (&mut self) -> Option<String> {
        let mut size_buf = [0u8; 8];
        match self.socket.read(&mut size_buf) {
            Ok(_) => {},
            Err(_) => {
                return None
            }
        }
        let size = usize::from_be_bytes(size_buf);
        if size > 25 {  // Do a little sanity checking
            self.socket.write(PacketHeader {data_len: 0, purpose: PacketType::Bad}.to_bytes().as_ref()).unwrap();  // Unused result, but I don't care since I'm returning an error value anyway.
            return None;
        }
        match self.socket.write(PacketHeader {data_len: 0, purpose: PacketType::Good}.to_bytes().as_ref()) {
            Ok(_) => {},
            Err(_) => return None
        };

        let mut name_buf = vec![0u8; size];
        match self.socket.read(&mut name_buf) {
            Ok(_) => {},
            Err(_) => {
                return None
            }
        }
        Some(String::from_utf8_lossy(&name_buf).to_string())
    }

    pub fn close_conn (&mut self) {
        match self.socket.shutdown(std::net::Shutdown::Both) {
            Ok(()) => {},
            Err(e) => {
                eprintln!("ERROR: Unable to properly shutdown socket: {}", e);
            }
        }
    }

    pub fn recv_file (&mut self) -> Result<String, Reason> {
        //! Receive a file
        //! 
        //! Returns: Result of either filename or error reason. Error mapping:
        //! 
        //! - BadData: Client sent gibberish
        //! - Other: Unable to open file for writing or unable to write to it.
        //! 
        //! The file name will be in the format "\<hostname\> \<time\>.tar.gz"
        //! 
        //! 
        //!  TODO implement SecureSocket::recv_archive()

        let current_time = Utc::now().to_rfc2822();
        let mut filename = match self.get_hostname() {
            Some(v) => v,
            None => {  // Something went wrong, so terminate the connection.
                self.close_conn();
                return Err(Reason::BadData);
            }
        };

        filename.push(' ');
        filename += (current_time + ".tar.gz").as_ref();  // Force filetype gzipped tarball
        let mut writer = BufWriter::new(
            match File::create(&filename) {
                Ok(f) => f,
                Err(e) => {
                    println!("ERROR: Unable to create file: {}", e);
                    return Err(Reason::Other);
                }
            }
        );
        let mut nonce: &Nonce;
        let mut len_buf = [0u8; 8];
        let mut data_len: usize;
        let mut nonce_raw = [0u8; 12];
        let mut enc_buf: Vec<u8>;
        let mut raw_buf: Vec<u8>;

        loop {
            match self.socket.read_exact(&mut nonce_raw) {
                Ok(v) => v,
                Err(e) => {
                    println!("Unable to read from socket: {}", e);
                    return Err(Reason::Interrupted);
                }
            };
            nonce = Nonce::from_slice(&nonce_raw);

            match self.socket.read_exact(&mut len_buf) {
                Ok(_) => {},
                Err(e) => {
                    println!("Unable to read size data: {}", e);
                    self.close_conn();
                    return Err(Reason::Interrupted);
                }
            }
            data_len = usize::from_be_bytes(len_buf);
            enc_buf = vec![0u8; data_len];

            match self.socket.read_exact(&mut enc_buf) {
                Ok(()) => {
                    raw_buf = match self.cipher.decrypt(nonce, &*enc_buf) {
                        Ok(v) => v,
                        Err(e) => {
                            eprintln!("Error decrypting data: {}", e);
                            return Err(Reason::BadData);
                        }
                    };

                    if raw_buf != b"DONE".to_vec() {
                        match writer.write_all(&raw_buf) {
                            Ok(()) => {},
                            Err(e) => {
                                eprintln!("ERROR: Unable to write to file: {}", e);
                                return Err(Reason::Other)
                            }
                        }
                    } else {
                        println!("Interrupt signal received.");
                        break;
                    }
                },
                Err(e) => {
                    eprintln!("{}", e);
                }
            }
        }

        Ok(filename)
    }


    fn send_hostname (&mut self, hostname: String) -> Option<()> {
        match self.socket.write(&hostname.len().to_be_bytes()) {
            Ok(_) => {},
            Err(e) => {
                println!("{}", e);
                return None
            }
        }

        match self.socket.write_all(hostname.as_bytes()) {
            Ok(_) => {},
            Err(e) => {
                println!("{}", e);
                return None
            }
        }

        Some(())
    }


    pub fn send_file (&mut self, hostname: String, file: File) -> Result<(), Reason> {
        //! Send a file over the network
        
        match self.send_hostname(hostname) {
            Some(_) => {},
            None => {
                self.close_conn();
                return Err(Reason::Closed)
            }
        };
        
        let mut buf: Vec<u8>;
        let mut n = [0u8; 12];
        let mut nonce: &Nonce;
        let mut reader = BufReader::new(file);
        
        let mut done = false;
        while !done {
            buf = vec![0u8; BUF_LEN];

            match reader.read(&mut buf) {
                Ok(bytes_read) => {
                    buf.truncate(bytes_read);
                    self.rng.fill_bytes(&mut n);
                    nonce = Nonce::from_slice(&n);
                    match self.socket.write_all(&nonce) {
                        Ok(()) => {},
                        Err(e) => {
                            eprintln!("Unable to send nonce: {}", e);
                            return Err(Reason::Interrupted);
                        }
                    }

                    if bytes_read == 0 {
                        println!("Finished sending");
                        done = true;
                        buf = match self.cipher.encrypt(nonce, b"DONE".as_ref()) {
                            Ok(v) => v,
                            Err(_) => {
                                eprintln!("Error encrypting data.");
                                return Err(Reason::Other);
                            }
                        };
                    } else {
                        buf = match self.cipher.encrypt(nonce, &*buf) {
                            Ok(v) => v,
                            Err(_) => {
                                eprintln!("Error encrypting data.");
                                return Err(Reason::Other);
                            }
                        };
                    }

                    match self.socket.write_all(&buf.len().to_be_bytes()) {
                        Ok(()) => {},
                        Err(e) => {
                            println!("Error sending data length: {}", e);
                            return Err(Reason::Interrupted);
                        }
                    }

                    match self.socket.write_all(&buf) {
                        Ok(()) => {},
                        Err(e) => {
                            eprintln!("Error sending data: {}", e);
                            return Err(Reason::Interrupted);
                        }
                    }
                },
                Err(e) => {
                    eprintln!("Unable to read data from disk: {}", e);
                    return Err(Reason::BadData);
                }
            }
        }

        return Ok(());
    }
}