secure_gate/fixed.rs
1use core::fmt;
2
3#[cfg(feature = "rand")]
4use rand::rand_core::OsError;
5
6use crate::FromSliceError;
7
8/// Stack-allocated secure secret wrapper.
9///
10/// This is a zero-cost wrapper for fixed-size secrets like byte arrays or primitives.
11/// The inner field is private, forcing all access through explicit methods.
12///
13/// Security invariants:
14/// - No `Deref` or `AsRef` — prevents silent access or borrowing.
15/// - No implicit `Copy` — even for `[u8; N]`, duplication must be explicit via `.clone()`.
16/// - `Debug` is always redacted.
17///
18/// # Examples
19///
20/// Basic usage:
21/// ```
22/// use secure_gate::Fixed;
23/// let secret = Fixed::new(42u32);
24/// assert_eq!(*secret.expose_secret(), 42);
25/// ```
26///
27/// For byte arrays (most common):
28/// ```
29/// use secure_gate::{Fixed, fixed_alias};
30/// fixed_alias!(Aes256Key, 32);
31/// let key_bytes = [0x42u8; 32];
32/// let key: Aes256Key = Fixed::from(key_bytes);
33/// assert_eq!(key.len(), 32);
34/// assert_eq!(key.expose_secret()[0], 0x42);
35/// ```
36///
37/// With `zeroize` feature (automatic wipe on drop):
38/// ```
39/// # #[cfg(feature = "zeroize")]
40/// # {
41/// use secure_gate::Fixed;
42/// let mut secret = Fixed::new([1u8, 2, 3]);
43/// drop(secret); // memory wiped automatically
44/// # }
45/// ```
46pub struct Fixed<T>(T); // ← field is PRIVATE
47
48impl<T> Fixed<T> {
49 /// Wrap a value in a `Fixed` secret.
50 ///
51 /// This is zero-cost and const-friendly.
52 ///
53 /// # Example
54 ///
55 /// ```
56 /// use secure_gate::Fixed;
57 /// const SECRET: Fixed<u32> = Fixed::new(42);
58 /// ```
59 #[inline(always)]
60 pub const fn new(value: T) -> Self {
61 Fixed(value)
62 }
63
64 /// Expose the inner value for read-only access.
65 ///
66 /// This is the **only** way to read the secret — loud and auditable.
67 ///
68 /// # Example
69 ///
70 /// ```
71 /// use secure_gate::Fixed;
72 /// let secret = Fixed::new("hunter2");
73 /// assert_eq!(secret.expose_secret(), &"hunter2");
74 /// ```
75 #[inline(always)]
76 pub const fn expose_secret(&self) -> &T {
77 &self.0
78 }
79
80 /// Expose the inner value for mutable access.
81 ///
82 /// This is the **only** way to mutate the secret — loud and auditable.
83 ///
84 /// # Example
85 ///
86 /// ```
87 /// use secure_gate::Fixed;
88 /// let mut secret = Fixed::new([1u8, 2, 3]);
89 /// secret.expose_secret_mut()[0] = 42;
90 /// assert_eq!(secret.expose_secret()[0], 42);
91 /// ```
92 #[inline(always)]
93 pub fn expose_secret_mut(&mut self) -> &mut T {
94 &mut self.0
95 }
96}
97
98/// # Byte-array specific helpers
99impl<const N: usize> Fixed<[u8; N]> {
100 /// Returns the fixed length in bytes.
101 ///
102 /// This is safe public metadata — does not expose the secret.
103 #[inline(always)]
104 pub const fn len(&self) -> usize {
105 N
106 }
107
108 /// Returns `true` if the fixed secret is empty (zero-length).
109 ///
110 /// This is safe public metadata — does not expose the secret.
111 #[inline(always)]
112 pub const fn is_empty(&self) -> bool {
113 N == 0
114 }
115}
116
117/// Implements `TryFrom<&[u8]>` for creating a [`Fixed`] from a byte slice of exact length.
118impl<const N: usize> core::convert::TryFrom<&[u8]> for Fixed<[u8; N]> {
119 type Error = FromSliceError;
120
121 fn try_from(slice: &[u8]) -> Result<Self, Self::Error> {
122 if slice.len() != N {
123 Err(FromSliceError::new(slice.len(), N))
124 } else {
125 let mut arr = [0u8; N];
126 arr.copy_from_slice(slice);
127 Ok(Self::new(arr))
128 }
129 }
130}
131
132impl<const N: usize> From<[u8; N]> for Fixed<[u8; N]> {
133 /// Wrap a raw byte array in a `Fixed` secret.
134 ///
135 /// Zero-cost conversion.
136 ///
137 /// # Example
138 ///
139 /// ```
140 /// use secure_gate::Fixed;
141 /// let key: Fixed<[u8; 4]> = [1, 2, 3, 4].into();
142 /// ```
143 #[inline(always)]
144 fn from(arr: [u8; N]) -> Self {
145 Self::new(arr)
146 }
147}
148
149/// Debug implementation (always redacted).
150impl<T> fmt::Debug for Fixed<T> {
151 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
152 f.write_str("[REDACTED]")
153 }
154}
155
156/// Regular equality — fallback when `ct-eq` feature is disabled.
157#[cfg(not(feature = "ct-eq"))]
158impl<T: PartialEq> PartialEq for Fixed<T> {
159 fn eq(&self, other: &Self) -> bool {
160 self.expose_secret() == other.expose_secret()
161 }
162}
163
164/// Equality — available when `ct-eq` is not enabled.
165#[cfg(not(feature = "ct-eq"))]
166impl<T: Eq> Eq for Fixed<T> {}
167
168/// Opt-in Clone — only for types marked `CloneSafe` (default no-clone).
169#[cfg(feature = "zeroize")]
170impl<T: crate::CloneSafe> Clone for Fixed<T> {
171 #[inline(always)]
172 fn clone(&self) -> Self {
173 Self(self.0.clone())
174 }
175}
176
177/// Constant-time equality — only available with `ct-eq` feature.
178#[cfg(feature = "ct-eq")]
179impl<const N: usize> Fixed<[u8; N]> {
180 /// Constant-time equality comparison.
181 ///
182 /// This is the **only safe way** to compare two fixed-size secrets.
183 /// Available only when the `ct-eq` feature is enabled.
184 ///
185 /// # Example
186 ///
187 /// ```
188 /// # #[cfg(feature = "ct-eq")]
189 /// # {
190 /// use secure_gate::Fixed;
191 /// let a = Fixed::new([1u8; 32]);
192 /// let b = Fixed::new([1u8; 32]);
193 /// assert!(a.ct_eq(&b));
194 /// # }
195 /// ```
196 #[inline]
197 pub fn ct_eq(&self, other: &Self) -> bool {
198 use crate::ct_eq::ConstantTimeEq;
199 self.expose_secret().ct_eq(other.expose_secret())
200 }
201}
202
203/// Random generation — only available with `rand` feature.
204#[cfg(feature = "rand")]
205impl<const N: usize> Fixed<[u8; N]> {
206 /// Generate fresh random bytes using the OS RNG.
207 ///
208 /// This is a convenience method that generates random bytes directly
209 /// without going through `FixedRandom`. Equivalent to:
210 /// `FixedRandom::<N>::generate().into_inner()`
211 ///
212 /// # Example
213 ///
214 /// ```
215 /// # #[cfg(feature = "rand")]
216 /// # {
217 /// use secure_gate::Fixed;
218 /// let key: Fixed<[u8; 32]> = Fixed::generate_random();
219 /// # }
220 /// ```
221 #[inline]
222 pub fn generate_random() -> Self {
223 crate::random::FixedRandom::<N>::generate().into_inner()
224 }
225
226 /// Try to generate random bytes for Fixed.
227 ///
228 /// Returns an error if the RNG fails.
229 ///
230 /// # Example
231 ///
232 /// ```
233 /// # #[cfg(feature = "rand")]
234 /// # {
235 /// use secure_gate::Fixed;
236 /// let key: Result<Fixed<[u8; 32]>, rand::rand_core::OsError> = Fixed::try_generate_random();
237 /// assert!(key.is_ok());
238 /// # }
239 /// ```
240 #[inline]
241 pub fn try_generate_random() -> Result<Self, OsError> {
242 crate::random::FixedRandom::<N>::try_generate()
243 .map(|rng: crate::random::FixedRandom<N>| rng.into_inner())
244 }
245}
246
247/// Zeroize integration.
248#[cfg(feature = "zeroize")]
249impl<T: zeroize::Zeroize> zeroize::Zeroize for Fixed<T> {
250 fn zeroize(&mut self) {
251 self.0.zeroize();
252 }
253}
254
255/// Zeroize on drop integration.
256#[cfg(feature = "zeroize")]
257impl<T: zeroize::Zeroize> zeroize::ZeroizeOnDrop for Fixed<T> {}