1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
use marker::{Randomizable, Zeroable}; use sec::Sec; use std::borrow::{Borrow, BorrowMut}; use std::ops::{Deref, DerefMut}; /// A type that wraps allocated memory suitable for cryptographic /// secrets. /// /// When initialized with existing data, the memory of the existing /// data is zeroed out. That said, this library cannot guarantee that /// that memory has not been copied elsewhere, swapped to disk, or /// otherwise handled insecurely so rely on this with caution. /// /// # Examples /// /// Generating cryptographic keys: /// /// ``` /// use secrets::Secret; /// /// let secret = Secret::<[u8; 32]>::random(); /// let secret_r = secret.borrow(); /// /// println!("{:?}", secret_r); /// ``` /// /// Secrets from existing mutable data: /// /// ``` /// use secrets::Secret; /// /// // static data for the test; static data *can't* be wiped, but /// // copies of it will be /// let reference : &'static [u8; 4] = b"\xfa\x12\x00\xd9"; /// let zeroes : &'static [u8; 4] = b"\x00\x00\x00\x00"; /// /// let mut bytes = *reference; /// let secret = Secret::from(&mut bytes); /// let secret_r = secret.borrow(); /// /// assert_eq!(*reference, *secret_r); /// assert_eq!(*zeroes, bytes); /// ``` /// /// Accessing array contents through pointers: /// /// ``` /// use secrets::Secret; /// use std::ptr; /// /// let mut secret = unsafe { Secret::<[u8; 4]>::uninitialized() }; /// let mut secret_w = secret.borrow_mut(); /// /// unsafe { /// ptr::write_bytes( /// secret_w.as_mut_ptr(), /// 0xd0, /// secret_w.len(), /// ); /// } /// /// assert_eq!(*b"\xd0\xd0\xd0\xd0", *secret_w); /// ``` /// /// Wrapping custom struct types: /// /// ``` /// use secrets::{Secret, Zeroable}; /// /// #[derive(Debug)] /// #[derive(PartialEq)] /// struct SensitiveData { a: u64, b: u8 }; /// /// impl Zeroable for SensitiveData {}; /// impl Default for SensitiveData { /// fn default() -> Self { SensitiveData { a: 100, b: 255 } } /// } /// /// let zeroed = Secret::<SensitiveData>::zero(); /// let default = Secret::<SensitiveData>::default(); /// /// assert_eq!(SensitiveData { a: 0, b: 0 }, *zeroed .borrow()); /// assert_eq!(SensitiveData::default(), *default.borrow()); /// ``` /// #[derive(Debug)] pub struct Secret<T> { sec: Sec<T>, } impl<T> PartialEq for Secret<T> { fn eq(&self, s: &Self) -> bool { self.sec == s.sec } } impl<T> Eq for Secret<T> {} impl<'a, T> From<&'a mut T> for Secret<T> where T: Zeroable { /// Moves the contents of `data` into a `Secret` and zeroes out /// the contents of `data`. fn from(data: &mut T) -> Self { Secret { sec: Sec::from(data) } } } impl<T> Default for Secret<T> where T: Default { /// Creates a new `Secret` with the default value for `T`. fn default() -> Self { Secret { sec: Sec::default(1) } } } impl<T> Secret<T> where T: Randomizable { /// Creates a new `Secret` capable of storing an object of type `T` /// and initialized with a cryptographically random value. pub fn random() -> Self { Secret { sec: Sec::random(1) } } } impl<T> Secret<T> where T: Zeroable { /// Creates a new `Secret` capable of storing an object of type `T` /// and initialized to all zeroes. pub fn zero() -> Self { Secret { sec: Sec::zero(1) } } } impl<T> Secret<T> { /// Creates a new `Secret` capable of storing an object of type `T`. /// /// By default, the allocated region is filled with 0xd0 bytes in /// order to help catch bugs due to uninitialized data. This /// method is marked as unsafe because filling an arbitrary type /// with garbage data is undefined behavior. #[allow(unsafe_code)] pub unsafe fn uninitialized() -> Self { Secret { sec: Sec::uninitialized(1) } } /// Creates and initializes a new `Secret` capable of storing an /// object of type `T`. /// /// Initialization is handled by a closure passed to method, which /// accepts a reference to the object to be initialized. The data /// in this reference will be uninitialized until written to, so /// care must be taken to initialize its memory without reading /// from it to avoid undefined behavior. #[allow(unsafe_code)] pub unsafe fn new<F>(init: F) -> Self where F: FnOnce(&mut T) { Secret { sec: Sec::<T>::new(1, |sec| init(sec.borrow_mut())) } } /// Returns the size in bytes of the data contained in the `Secret` pub fn size(&self) -> usize { self.sec.size() } /// Returns a `Ref<T>` from which elements in the `Secret` can be /// safely read from. pub fn borrow(&self) -> Ref<T> { Ref::new(&self.sec) } /// Returns a `Ref<T>` from which elements in the `Secret` can be /// safely read from or written to. pub fn borrow_mut(&mut self) -> RefMut<T> { RefMut::new(&mut self.sec) } } /// Wraps an immutably borrowed reference to the contents of a `Secret`. #[derive(Debug)] pub struct Ref<'a, T: 'a> { sec: &'a Sec<T>, } /// Wraps an mutably borrowed reference to the contents of a `Secret`. #[derive(Debug)] pub struct RefMut<'a, T: 'a> { sec: &'a mut Sec<T>, } impl<'a, T> Drop for Ref<'a, T> { fn drop(&mut self) { self.sec.lock(); } } impl<'a, T> Drop for RefMut<'a, T> { fn drop(&mut self) { self.sec.lock(); } } impl<'a, T> Deref for Ref<'a, T> { type Target = T; fn deref(&self) -> &Self::Target { (*self.sec).borrow() } } impl<'a, T> Deref for RefMut<'a, T> { type Target = T; fn deref(&self) -> &Self::Target { (*self.sec).borrow() } } impl<'a, T> DerefMut for RefMut<'a, T> { fn deref_mut(&mut self) -> &mut Self::Target { (*self.sec).borrow_mut() } } impl<'a, T> Ref<'a, T> { fn new(sec: &Sec<T>) -> Ref<T> { sec.read(); Ref { sec: sec } } } impl<'a, T> RefMut<'a, T> { fn new(sec: &mut Sec<T>) -> RefMut<T> { sec.write(); RefMut { sec: sec } } }