1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
#![feature(allocator_api, alloc_layout_extra, ptr_offset_from)]

use std::ops::{Deref, DerefMut};
use std::{ptr, slice};
use std::cell::RefCell;
use std::mem::{size_of, align_of};
use std::alloc::*;
use std::iter::*;

/// A chunk of memory that the StackPool will allocate from, as well as the pointer
/// that indicates how much (if any) is used. The default value for this struct is
/// unallocated, containing only null pointers.
struct Heap {
	bottom: *mut u8, // invariant
	top: *mut u8,
	current: *mut u8,
}

/// Bumps a pointer up to the nearest aligned address
fn align<T>(value: *mut u8) -> *mut u8 {
	unsafe { value.add(value.align_offset(align_of::<T>())) }
}

impl Heap {
	/// How many of T can we hold right now?
	/// This takes into account not just the size of T, but also the alignment of our current stack pointer.
	pub fn usable_size<T>(&self) -> usize { // TODO: Cleanup, using signature fn can_accommodate(layout: Layout) -> bool
		let aligned = align::<T>(self.current);
		let bytes_remaining = unsafe { self.top.offset_from(aligned) };
		if bytes_remaining < 0 { 0 } else {
			match size_of::<T>() {
				0 => std::isize::MAX as usize,
				_ => bytes_remaining as usize / size_of::<T>()
			}
		}
	}

	/// Returns a smart pointer to a slice from this allocation, bumping up our stack pointer in the process.
	pub fn slice<T>(&mut self, count: usize, pool_index: usize) -> StackAlloc<T> {
		debug_assert!(self.usable_size::<T>() >= count);
		let layout = Layout::new::<T>().repeat(count).unwrap().0;
		let restore = self.current;
		let base = align::<T>(restore);
		self.current = unsafe { base.add(layout.size()) };
		StackAlloc {
			len: count,
			ptr: base as *mut T,
			restore,
			pool_alloc: pool_index,
		}
	}

	/// Convenience function for the layout of a [u8]
	fn layout_u8(size_in_bytes: usize) -> Layout {
		Layout::new::<u8>().repeat(size_in_bytes).unwrap().0 // TODO: Use layout more elsewhere, it was discovered late.
	}

	/// Does an allocation belong to this pool?
	#[cfg(debug_assertions)]
	fn contains(&self, p: *mut u8) -> bool {
		unsafe {
			!self.bottom.is_null() &&
			p.offset_from(self.bottom) >= 0
			&& self.top.offset_from(p) >= 0
		}
	}

	/// Free an allocation from StackAlloc
	pub fn release(&mut self, p: *mut u8) {
		#[cfg(debug_assertions)]
		debug_assert!(self.contains(p));
		// This is redundant with the full history check, but then again all debug asserts should be redundant.
		unsafe { debug_assert!(p.offset_from(self.current) <= 0, "Out of order release"); }
		self.current = p;
	}

	/// The size of all slices in use. This is <= bytes_total()
	pub fn bytes_used(&self) -> usize {
		unsafe { self.current.offset_from(self.bottom) as usize }
	}

	/// The total size of this allocation, free and used.
	pub fn bytes_total(&self) -> usize {
		unsafe { self.top.offset_from(self.bottom) as usize }
	}

	/// Creates a new Heap of a specific size.
	pub fn new(size_in_bytes: usize) -> Heap {
		// TODO: Use error_chain instead of unwrap. https://docs.rs/error-chain/0.12.0/error_chain/
		debug_assert!(size_in_bytes >= size_for_i(0));
		let layout = Self::layout_u8(size_in_bytes);
		debug_assert!(size_in_bytes == layout.size()); // Invariant, See also: c4e1285a-306a-450f-a027-13c0cd3d3d08
		unsafe {
			let bottom = Global.alloc(layout).unwrap().as_ptr(); // TODO: There may be mitigation, like not doubling in size.
			Heap {
				bottom,
				current: bottom,
				top: bottom.add(layout.size()),
			}
		}
	}
}

impl Drop for Heap {
	/// Free memory when the pool is unowned.
	fn drop(&mut self) {
		debug_assert!(self.bytes_used() == 0); // Do not free memory if still in-use. Not runtime check, because this should be statically impossible if this module is implemented correctly.
		if let Some(bottom) = ptr::NonNull::new(self.bottom) { // May be null if the Heap was unused/unallocated.
			let layout = Self::layout_u8(self.bytes_total()); // See also: c4e1285a-306a-450f-a027-13c0cd3d3d08
			unsafe { Global.dealloc(bottom, layout); }
		}
	}
}

impl Default for Heap {
	/// The unallocated Heap
	fn default() -> Heap {
		Heap {
			bottom: ptr::null_mut(),
			top: ptr::null_mut(),
			current: ptr::null_mut(),
		}
	}
}


// First pool is 64K in size. We expect to blow right through this, but since this is
// per-thread it can be prudent to start small.
const MIN_POW: usize = 16;
const MAX_POW: usize = 32;
const NUM_POOLS: usize = MAX_POW-MIN_POW; // Since pools at least double in size, there can never be more than this many pools or we would run out of memory for a single allocation.

/// The size of the nth generation of the Heap
fn size_for_i(i: usize) -> usize {
	1 << (i + MIN_POW)
}

/// Holds multiple generations of Heap. Resizes, slices, and frees.
struct StackPool {
	pools: [Heap; NUM_POOLS],
	top: Option<usize>, // Which pool is the top pool?

	#[cfg(debug_assertions)]
	history: Vec<*mut u8>,
}

impl StackPool {
	pub fn get_slice<T>(&mut self, count: usize, i: usize) -> StackAlloc<T> {
		let result = self.pools[i].slice::<T>(count, i);
		#[cfg(debug_assertions)]
		self.history.push(result.restore);
		result
	}
	/// Slice from the top pool, sizing up if necessary.
	pub fn acquire<T>(&mut self, count: usize) -> StackAlloc<T> {
		let pools = &mut self.pools;
		let mut prev_used = 0;
		let mut next_pool = 0;
		if let Some(top) = self.top {
			let pool = &pools[top];
			if pool.usable_size::<T>() > count {
				return self.get_slice(count, top);
			}
			prev_used = pool.bytes_used();
			next_pool = top + 1;
		}
		// The choices are to specify an alignment, or to make sure that the allocation
		// is large enough to accommodate alignment padding. Choosing the latter.
		let min_bytes = prev_used + size_of::<T>() * count + align_of::<T>();
		for i in next_pool..NUM_POOLS {
			let size = size_for_i(i);
			if size_for_i(i) >= min_bytes {
				pools[i] = Heap::new(size);
				self.top = Some(i);
				return self.get_slice(count, i);
			}
		}
		panic!("Allocation size too large");
	}

	/// Release a previously acquired pointer.
	pub fn release<T>(&mut self, ptr: &StackAlloc<T>) {
		#[cfg(debug_assertions)]
		debug_assert!(self.history.pop().unwrap() == ptr.restore);

		self.pools[ptr.pool_alloc].release(ptr.restore);
		if self.top.unwrap() != ptr.pool_alloc {
			self.pools[ptr.pool_alloc] = Default::default();
		}
	}

	/// How many bytes are allocated by all Heap that are currently owned.
	#[cfg(test)]
	fn total_bytes_allocated(&self) -> usize {
		if let Some(top) = self.top {
			{ 0..=top }
				.map(|i| { self.pools[i].bytes_total() })
				.sum()
		} else {
			0
		}
	}

}

// Even though there is no support for threads in wasm now, this is required to make the compiler happy. Even so, threads will be useful later.
thread_local!(
	static THREAD_LOCAL_POOL: RefCell<StackPool> = RefCell::new(
		StackPool {
			pools: Default::default(), top:None,
			#[cfg(debug_assertions)]
			history: Vec::new(),
		}
));

/// A smart pointer that automatically releases the borrowed memory.
#[derive(Debug)]
pub struct StackAlloc<T> {
	restore: *mut u8,
	ptr: *mut T,
	len: usize,
	pool_alloc: usize,
}


impl<T> Deref for StackAlloc<T> {
	type Target = [T];

	fn deref(&self) -> &[T] {
		unsafe {
			slice::from_raw_parts(self.ptr, self.len)
		}
	}
}

impl<T> DerefMut for StackAlloc<T> {
	fn deref_mut(&mut self) -> &mut [T] {
		unsafe {
			slice::from_raw_parts_mut(self.ptr, self.len)
		}
	}
}

impl<T> Drop for StackAlloc<T> {
	/// Release our slice from the Heap when no longer owned.
	fn drop(&mut self) {
		unsafe { ptr::drop_in_place(&mut self[..]); }
		THREAD_LOCAL_POOL.with(|rc| {
			rc.borrow_mut().release(&self);
		})
	}
}

/// WARNING! The slice that StackAlloc<T> will deref to is logically uninitialized.
/// This leads to all sorts of wildly unsafe things, including undefined behavior.
/// Eg: Acquiring a type that implements drop may cause a write to the slice to drop invalid instances.
// TODO: Add !Drop to signature, but that doesn't seem to be implemented in the compiler yet...
#[cfg(any(test, feature = "experimental"))]
pub unsafe fn acquire_uninitialized<T>(count: usize) -> StackAlloc<T> {
	THREAD_LOCAL_POOL.with(|rc| {
		rc.borrow_mut().acquire(count)
	})
}

/// ## Panics
/// * Must panic if the iterator is unbounded in length, or if the size of the allocation is too large.
pub fn acquire<T, I: Iterator<Item=T>>(items: I) -> StackAlloc<T> {
	THREAD_LOCAL_POOL.with(|rc| {
		let len = items.size_hint().1.expect("Expected an iterator with an upper bound.");
		// TODO: Check if the size of the allocation would exceed isize.max bytes
		let mut pool = rc.borrow_mut().acquire(len);
		let mut p = pool.ptr;

		// TODO: Decide whether to canonize behavior for a size hint that is too large. (This is probably necessary given that an initializer could allocate.)
		// TODO: Write test for panic in iterator.
		pool.len = 0;
		for item in items.take(len) { // Taking only len here ensures that we don't need to trust size-hint.
			unsafe {
				ptr::write(p, item);
				p = p.add(1);
			}
			pool.len += 1; // By modifying the len after writing an item we ensure that uninitialized memory is not dropped.
		}
		// TODO: In the event that an enumerator produces fewer items than the upper bound of the size hint, we should free some
		// memory if possible. Consider though it is possible (if unlikely) that the iterator producing items used allocations
		// from our heap of it's own, so it's not as simple as just moving the pointer down.
		pool
	})
}

#[cfg(test)]
mod tests {
	use super::*;
	use testdrop::TestDrop;
	use std::iter::repeat;

	#[test]
	fn slices_do_no_alias() {
		let pool0 = acquire(repeat(0).take(10));
		let pool1 = acquire(repeat(1).take(10));

		assert!(pool0.iter().all(|p| *p == 0));
		assert!(pool1.iter().all(|p| *p == 1));
	}


	#[test]
	fn uninitialized_is_correctly_sized() {
		let pool = unsafe { acquire_uninitialized::<u32>(10) };
		assert_eq!(pool.len(), 10);
	}

	#[test]
	fn is_correctly_sized() {
		let pool = acquire(0..10u8);
		assert_eq!(pool.len(), 10);
	}

	#[test]
	fn memory_is_reused() {
		{
			let _ = acquire(0..10usize);
		}
		// The pool is freed here, so we should see the same memory used again.
		{
			let pool1 = unsafe { acquire_uninitialized::<usize>(10) };
			for i in 0..pool1.len() {
				assert_eq!(pool1[i], i);
			}
		}
	}

	// TODO: When there are threads in wasm, add a test to ensure that pools are indeed threadlocal.

	#[test]
	fn memory_is_not_released_eagerly() {
		let current_size = || { THREAD_LOCAL_POOL.with(|rc| { rc.borrow().total_bytes_allocated() } ) };

		// The pre-condition of this test assumes we either have never used the pool, or never upsized it.
		// If this fails we can add a reset method (before wasm threads are introduced), or start up a thread or to get a unique pool, and assert that it's size is 0.
		assert!(current_size() == 0 || current_size() == size_for_i(0));

		let small_size = size_for_i(0) / 2;
		let large_size = size_for_i(0) - 1;

		{
			// After acquiring 1 pool, we should start with the smallest size.
			let _pool0 = unsafe { acquire_uninitialized::<u8>(small_size) };
			assert_eq!(current_size(), size_for_i(0));

			{
				// After requiring something larger, we should have enough space for both pools.
				let _pool1 = unsafe { acquire_uninitialized::<u8>(large_size) };
				assert_eq!(current_size(), size_for_i(0) + size_for_i(1));
			}

			// We released the outer pool, but we should still have the 2nd pool allocated, and we haven't released 0 yet so it should still be there.
			assert_eq!(current_size(), size_for_i(0) + size_for_i(1));
		}

		// We have dropped all slices.
		// The smaller pool should be released, but should still have the largest pool allocated to be ready for the next frame/allocation
		assert_eq!(current_size(), size_for_i(1));
	}

	#[test]
	fn drops() {
		let td = TestDrop::new();
		let (id, item) = td.new_item();
		{
			let some = Some(item);
			let _ = acquire(some.iter());
			// Not dropped when moved into the slice
			td.assert_no_drop(id);
		}

		// Dropped with the slice
		td.assert_drop(id);
	}

	#[test]
	fn shrinks_on_large_size_hint() {
		struct UndersizedIterator {
			remaining: usize
		}
		impl Iterator for UndersizedIterator {
			type Item = usize;
			fn next(&mut self) -> Option<Self::Item> {
				if self.remaining == 0 {
					None
				} else {
					self.remaining -= 1;
					Some(self.remaining)
				}
			}
			// This is clearly wrong on both the upper and lower bound.
			fn size_hint(&self) -> (usize, Option<usize>) {
				(self.remaining + 20, Some(self.remaining + 20))
			}
		}

		let bad = UndersizedIterator { remaining: 5 };
		let values = acquire(bad);
		assert!(values.len() == 5);
	}

	#[test]
	fn empty_slice_ok() {
		acquire(repeat(0).take(0));
		acquire(repeat(0).take(0));
	}

	#[test]
	fn zst_ok() {
		let data = acquire(repeat(()).take(10));
		debug_assert!(data.len() == 10);
		debug_assert!(data[0] == ());
	}


	/*
	// This doesn't quite work, since it ends up panicking again while unwinding.
	#[test]
	fn release_out_of_order_panics() {
		let result = std::panic::catch_unwind(|| {
			let x = acquire(0..10);
			let y = acquire(0..10);

			fn move_into(ptr: StackAlloc<u8>) {}
			move_into(x);
		});

		assert!(result.is_err());
	}
	*/

}