1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792
use libseccomp_sys::{
seccomp_notif, seccomp_notif_resp, seccomp_notify_alloc, seccomp_notify_free,
seccomp_notify_id_valid, seccomp_notify_receive, seccomp_notify_respond,
SECCOMP_USER_NOTIF_FLAG_CONTINUE,
};
use std::fs::{File, OpenOptions};
use std::io;
use std::io::ErrorKind;
use std::os::fd::{AsRawFd, RawFd};
use std::os::raw::c_int;
use std::pin::Pin;
use std::task::{Context, Poll};
use tokio::io::unix::AsyncFd;
use tokio::io::Interest;
use tokio_stream::Stream;
pub use syscalls::Sysno;
#[cfg(not(target_os = "linux"))]
compile_error!("There is little to no point to run this crate on non-Linux systems!");
/// Represents a notification from the seccomp system call.
///
/// This struct contains information about a system call that has been intercepted by seccomp.
/// It includes the system call number (`syscall`), the arguments to the system call (`args`),
/// and other relevant information such as the process ID (`pid`) and a file descriptor (`fd`).
#[derive(Debug, Copy, Clone)]
pub struct Notification {
/// The unique identifier for the notification.
id: u64,
/// The process ID that made the system call.
pid: u32,
/// The system call number.
pub syscall: crate::Sysno,
/// The arguments to the system call.
pub args: [u64; 6],
/// A file descriptor associated with the notification.
fd: RawFd,
}
/// Represents the type of response to a seccomp notification.
///
/// This enum is used to specify the outcome of handling a seccomp notification.
/// It can indicate success with a return value, a raw error code, or an `io::Error` for convenience.
pub enum ResponseType {
/// Indicates success with a specific return value.
Success(i64),
/// Indicates an error that will be written to the targets errno.
RawError(i32),
/// Indicates an error with an `io::Error`. It will be converted to an integer and written to the targets errno.
Error(io::Error),
}
/// Converts a raw error code to a `Result`.
///
/// This function takes a raw error code (as an `c_int`) and converts it to a `Result`.
/// If the error code is 0, it returns `Ok(())`. Otherwise, it converts the error code
/// to an `io::Error` and returns `Err(io::Error)`.
fn cvt(result: c_int) -> Result<(), io::Error> {
match result {
0 => Ok(()),
_ => Err(io::Error::last_os_error()),
}
}
/// Represents a raw seccomp notification.
///
/// This struct wraps a raw pointer to a `seccomp_notif` structure.
/// It is used to manage the memory of the seccomp notification.
///
/// You should *probably* not be using this directly
#[derive(Debug)]
struct RawNotification(*mut seccomp_notif);
impl Drop for RawNotification {
/// Frees the memory associated with the raw seccomp notification.
///
/// This method is called when a `RawNotification` is dropped.
/// It ensures that the memory allocated for the `seccomp_notif` structure is properly freed.
fn drop(&mut self) {
let ptr = std::mem::replace(&mut self.0, std::ptr::null_mut());
if !ptr.is_null() {
unsafe {
seccomp_notify_free(ptr, std::ptr::null_mut());
}
}
}
}
/// Represents a raw seccomp response.
///
/// This struct wraps a raw pointer to a `seccomp_notif_resp` structure.
/// It is used to manage the memory of the seccomp response.
///
/// You should *probably* not be using this directly
#[derive(Debug)]
struct RawResponse(*mut seccomp_notif_resp);
impl Drop for RawResponse {
/// Frees the memory associated with the raw seccomp response.
///
/// This method is called when a `RawResponse` is dropped.
/// It ensures that the memory allocated for the `seccomp_notif_resp` structure is properly freed.
fn drop(&mut self) {
let ptr = std::mem::replace(&mut self.0, std::ptr::null_mut());
if !ptr.is_null() {
unsafe {
seccomp_notify_free(std::ptr::null_mut(), ptr);
}
}
}
}
impl RawResponse {
/// Allocates a new raw seccomp response.
///
/// This method allocates memory for a `seccomp_notif_resp` structure and returns a `RawResponse`
/// that wraps the pointer to this structure.
pub fn new() -> Result<Self, io::Error> {
let mut response = std::ptr::null_mut();
cvt(unsafe { seccomp_notify_alloc(std::ptr::null_mut(), &mut response) })?;
Ok(Self(response))
}
/// Sends a continue response for a seccomp notification.
///
/// This method sets the response to continue the execution of the intercepted system call
/// and sends the response back to the kernel.
///
/// # Safety
///
/// This method is unsafe because continuing a syscall is inherently unsafe.
/// Please consult the notes on
/// [SECCOMP_USER_NOTIF_FLAG_CONTINUE in man seccomp_unotify(2)](https://man7.org/linux/man-pages/man2/seccomp_unotify.2.html#NOTES)
pub unsafe fn send_continue(self, fd: RawFd, id: u64) -> Result<(), io::Error> {
(*self.0).id = id;
(*self.0).val = 0;
(*self.0).error = 0;
(*self.0).flags |= SECCOMP_USER_NOTIF_FLAG_CONTINUE;
cvt(unsafe { seccomp_notify_respond(fd, self.0) })?;
Ok(())
}
/// Sends a response for a seccomp notification.
///
/// This method sets the response based on the provided `ResponseType` and sends the response
/// back to the kernel.
pub fn send(self, fd: RawFd, id: u64, response_type: ResponseType) -> Result<(), io::Error> {
unsafe {
(*self.0).id = id;
}
match response_type {
ResponseType::Success(val) => unsafe {
(*self.0).val = val;
(*self.0).error = 0;
},
ResponseType::RawError(err) => unsafe {
(*self.0).val = 0;
(*self.0).error = -err;
},
ResponseType::Error(err) => unsafe {
(*self.0).val = 0;
(*self.0).error = -err.raw_os_error().ok_or_else(|| {
io::Error::new(
ErrorKind::InvalidData,
"Supplied io::Error did not map to an OS error!",
)
})?;
},
}
cvt(unsafe { seccomp_notify_respond(fd, self.0) })?;
Ok(())
}
}
impl RawNotification {
/// Allocates a new raw seccomp notification.
///
/// This method allocates memory for a `seccomp_notif` structure and returns a `RawNotification`
/// that wraps the pointer to this structure.
pub fn new() -> Result<Self, io::Error> {
let mut notification = std::ptr::null_mut();
cvt(unsafe { seccomp_notify_alloc(&mut notification, std::ptr::null_mut()) })?;
Ok(Self(notification))
}
/// Receives a seccomp notification.
///
/// This method receives a seccomp notification from the kernel and returns the notification
/// as a `seccomp_notif` structure.
///
/// # Blocking
///
/// This method **will** block unless you've previously received a readable event from
/// epoll / select / poll.
pub fn recv(self, fd: RawFd) -> Result<seccomp_notif, io::Error> {
cvt(unsafe { seccomp_notify_receive(fd, self.0) })?;
Ok(unsafe { *self.0 })
}
}
impl Notification {
/// Constructs a `Notification` from a raw `seccomp_notif` structure and a file descriptor.
///
/// This method takes a `seccomp_notif` structure and a file descriptor (`RawFd`) as input.
/// It constructs a `Notification` instance by extracting the relevant fields from the `seccomp_notif`
/// structure and the file descriptor.
///
/// # Arguments
///
/// * `notif` - A raw `seccomp_notif` structure containing the notification data.
/// * `fd` - A file descriptor associated with the notification.
///
/// # Returns
///
/// A `Notification` instance with the extracted data.
pub fn from_raw(notif: seccomp_notif, fd: RawFd) -> Self {
Self {
id: notif.id,
pid: notif.pid,
syscall: Sysno::from(notif.data.nr),
args: notif.data.args,
fd: fd.as_raw_fd(),
}
}
/// Checks if the notification is valid.
///
/// This method checks the validity of the notification by calling `seccomp_notify_id_valid`
/// with the file descriptor and the notification ID. It returns `true` if the notification
/// is valid, and `false` otherwise.
///
/// # Returns
///
/// `true` if the notification is valid, `false` otherwise.
pub fn valid(&self) -> bool {
cvt(unsafe { seccomp_notify_id_valid(self.fd, self.id) }).is_ok()
}
/// Opens the memory file of the process associated with the notification.
///
/// This method attempts to open the memory file of the process identified by the notification's
/// process ID. It constructs the path to the memory file and attempts to open it with read and
/// write permissions. If the notification is not valid (i.e., the process has quit), it returns
/// an error indicating that the process has quit.
///
/// # Safety
///
/// This method is unsafe because opening or reading the memory of a remote process is inherently prone to race conditions.
/// While writing to remote memory is possible, it is **never** safe.
/// Proceed with caution - here be demons!
///
/// # Errors
///
/// Returns an `io::Error` if the memory file cannot be opened or if the notification is not valid.
pub unsafe fn open(&self) -> Result<File, io::Error> {
// Build the path to procfs
// TODO: This is not very robust or tested against weird environments
let path = format!("/proc/{}/mem", self.pid);
let file = OpenOptions::new().read(true).write(true).open(path)?;
// If our target got killed and the pid re-used we might be non the wiser so
// we explicitly re-check here to make sure we actually have the correct file open.
// TODO: Add tests for this
// This is untested since it'd require killing the process and
// we currently run all our tests within the same process
if !self.valid() {
return Err(io::Error::new(
ErrorKind::NotFound,
"Process has quit while trying to access its memory!",
));
}
Ok(file)
}
}
/// A wrapper around a file descriptor for seccomp notifications.
///
/// This struct is a wrapper around a `RawFd` that represents a file descriptor for seccomp notifications.
/// It implements the `AsRawFd` trait to allow access to the underlying file descriptor.
#[derive(Debug)]
struct SeccompFd(RawFd);
impl AsRawFd for SeccompFd {
/// Returns the raw file descriptor.
///
/// This method returns the underlying `RawFd` of the `SeccompFd`.
fn as_raw_fd(&self) -> RawFd {
self.0.as_raw_fd()
}
}
/// A stream of seccomp notifications.
///
/// This struct provides an asynchronous stream of seccomp notifications.
/// It wraps an `AsyncFd` around a `SeccompFd` to enable asynchronous operations on the seccomp file descriptor.
#[derive(Debug)]
pub struct NotificationStream {
inner: AsyncFd<SeccompFd>,
}
impl NotificationStream {
/// Creates a new `NotificationStream` from a raw file descriptor.
///
/// This method initializes a `NotificationStream` with the given raw file descriptor.
/// It sets up the `AsyncFd` to be ready for reading seccomp notifications.
///
/// # Arguments
///
/// * `fd` - The raw file descriptor for seccomp notifications.
///
/// # Returns
///
/// A `Result` containing a new `NotificationStream` or an `io::Error` if the operation fails.
pub fn new(fd: RawFd) -> Result<Self, io::Error> {
Ok(Self {
inner: AsyncFd::with_interest(SeccompFd(fd), Interest::READABLE | Interest::WRITABLE)?,
})
}
/// Receives a seccomp notification.
///
/// This method will block until it receives a seccomp notification.
/// You can prevent it from blocking by listening for `self.inner` to become readable
/// using epoll / poll / select.
///
/// # Returns
///
/// A `Result` containing a `Notification` or an `io::Error`.
pub fn blocking_recv(&self) -> Result<Notification, io::Error> {
let raw = RawNotification::new()?.recv(self.inner.as_raw_fd())?;
Ok(Notification::from_raw(raw, self.inner.as_raw_fd()))
}
/// Receives a seccomp notification asynchronously.
///
/// This method will not block unless other threads are simultaneously listening for notifications.
///
/// # Returns
///
/// A `Result` containing a `Notification` or an `io::Error`.
pub async fn recv(&self) -> Result<Notification, io::Error> {
// TODO: This is kinda dangerous when other threads are waiting for a notification.
let guard = self.inner.readable().await?;
let result = self.blocking_recv();
drop(guard);
result
}
/// Sends a response to a seccomp notification.
///
/// This method sends a response to a seccomp notification based on the provided `ResponseType`.
///
/// # Arguments
///
/// * `notif` - The notification to which the response is being sent.
/// * `response_type` - The type of response to send.
///
/// # Returns
///
/// A `Result` indicating the success or failure of the operation.
pub fn send(&self, notif: Notification, response_type: ResponseType) -> Result<(), io::Error> {
let raw = RawResponse::new()?;
raw.send(self.inner.as_raw_fd(), notif.id, response_type)?;
Ok(())
}
/// Sends a continue response to a seccomp notification.
///
/// This method sends a continue response to a seccomp notification.
/// It returns a `Result` indicating the success or failure of the operation.
///
/// # Arguments
///
/// * `notif` - The notification to which the continue response is being sent.
///
/// # Returns
///
/// A `Result` indicating the success or failure of the operation.
///
/// # Safety
///
/// This method is unsafe because continuing a syscall is inherently prone to race conditions.
/// See `RawResponse::send_continue` for more information.
pub unsafe fn send_continue(&self, notif: Notification) -> Result<(), io::Error> {
let raw = RawResponse::new()?;
raw.send_continue(self.inner.as_raw_fd(), notif.id)?;
Ok(())
}
}
impl Stream for NotificationStream {
type Item = Notification;
/// Polls the stream for the next notification.
///
/// This method polls the stream to check if a new notification is ready to be received.
/// It returns a `Poll` indicating whether a notification is ready, an error occurred, or the operation is pending.
///
/// # Arguments
///
/// * `self` - A mutable reference to `self`.
/// * `cx` - A context for the current task.
///
/// # Returns
///
/// A `Poll` indicating the state of the next notification.
fn poll_next(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> {
match self.inner.poll_read_ready(cx) {
Poll::Ready(Ok(mut guard)) => {
if guard.ready().is_read_closed() {
Poll::Ready(None)
} else {
let x = self.blocking_recv().ok();
guard.clear_ready();
Poll::Ready(x)
}
}
// I don't think this ever happens
Poll::Ready(Err(_)) => Poll::Ready(None),
Poll::Pending => Poll::Pending,
}
}
}
#[cfg(test)]
#[allow(clippy::await_holding_lock)]
mod tests {
use super::*;
use libseccomp::{
reset_global_state, ScmpAction, ScmpArch, ScmpFd, ScmpFilterContext, ScmpSyscall,
};
use std::error::Error;
use std::ffi::CStr;
use std::fmt::Debug;
use std::io::{Seek, SeekFrom, Write};
use std::sync::atomic::{AtomicUsize, Ordering};
use std::sync::Mutex;
use std::thread;
use std::time::Duration;
use std::thread::JoinHandle;
use tokio::sync::oneshot;
use tokio_stream::StreamExt;
// libseccomp is **NOT** thread-safe, so we'll have to prevent our tests from running simultaneously.
static SECCOMP_MUTEX: Mutex<()> = Mutex::new(());
/// Runs a closure in a new thread with a seccomp() filter applied.
/// Currently it will only filter `uname`.
///
/// # Arguments
///
/// * `fd_tx` - A oneshot sender to transmit the notification fd back to the main thread
/// * `func` - The closure that will run in a seccomp'd thread
fn run_with_seccomp<F, Output>(fd_tx: oneshot::Sender<ScmpFd>, func: F) -> JoinHandle<Output>
where
F: FnOnce() -> Output + Send + 'static,
Output: Send + Clone + Debug + 'static,
{
thread::spawn(move || {
// Just to be sure, clean the global state.
// This doesn't actually call into kernel, just clears a global struct.
reset_global_state().unwrap();
// Construct and load a filter
let filter = setup().expect("Failed to setup SECCOMP!");
// Retrieve the fd from libseccomp
let fd = filter
.get_notify_fd()
.expect("Did not receive fd from seccomp()!");
// Send the fd over to the main thread
// This works because all threads within a process share fds
fd_tx.send(fd).unwrap();
// Evaluate the user supplied function
let result = func();
drop(filter);
result
})
}
/// Creates and loads a seccomp() filter that will cause calls to `uname`
/// to send notifications to user space.
fn setup() -> Result<ScmpFilterContext, Box<dyn Error>> {
// Creates a new filter that will allow everything by default
let mut filter = ScmpFilterContext::new_filter(ScmpAction::Allow)?;
// This will make the filter trigger for the native arch
filter.add_arch(ScmpArch::Native)?;
// Make the filter notify us for `uname`
let syscall = ScmpSyscall::from_name("uname")?;
filter.add_rule(ScmpAction::Notify, syscall)?;
// Apply the filter to the current thread
filter.load()?;
Ok(filter)
}
#[tokio::test]
async fn test_drop() -> Result<(), io::Error> {
// This test fails only when it segfaults lol
RawResponse(std::ptr::null_mut());
RawNotification(std::ptr::null_mut());
Ok(())
}
#[tokio::test]
async fn test_bad_error() -> Result<(), io::Error> {
// Lock so we don't trash the global state of libseccomp with concurrent accesses
let guard = SECCOMP_MUTEX.lock().unwrap();
let (fd_tx, fd_rx) = oneshot::channel::<ScmpFd>();
let handle = run_with_seccomp(fd_tx, move || {
let mut n = unsafe { std::mem::zeroed() };
let r = cvt(unsafe { libc::uname(&mut n) });
assert!(matches!(r, Ok(())));
});
let fd = fd_rx.await.expect("Did not receive FD!");
let mut stream =
NotificationStream::new(fd).expect("Failed to construct NotificationStream");
let notification = tokio::time::timeout(Duration::from_secs(5), stream.next())
.await
.expect("Did not receive a notification in time!")
.unwrap();
assert!(matches!(notification.syscall, Sysno::uname));
stream
.send(
notification,
ResponseType::Error(io::Error::new(ErrorKind::Other, "Custom Error")),
)
.expect_err("Expected error!");
unsafe { stream.send_continue(notification) }.unwrap();
handle.join().expect("Failed to wait for thread!");
drop(guard);
Ok(())
}
#[tokio::test]
async fn test_error() -> Result<(), io::Error> {
// Lock so we don't trash the global state of libseccomp with concurrent accesses
let guard = SECCOMP_MUTEX.lock().unwrap();
let (fd_tx, fd_rx) = oneshot::channel::<ScmpFd>();
let handle = run_with_seccomp(fd_tx, move || {
let mut n = unsafe { std::mem::zeroed() };
let r = cvt(unsafe { libc::uname(&mut n) });
assert!(matches!(r, Err(e) if e.kind() == ErrorKind::Unsupported));
});
let fd = fd_rx.await.expect("Did not receive FD!");
let mut stream =
NotificationStream::new(fd).expect("Failed to construct NotificationStream");
let notification = tokio::time::timeout(Duration::from_secs(5), stream.next())
.await
.expect("Did not receive a notification in time!")
.unwrap();
assert!(matches!(notification.syscall, Sysno::uname));
stream
.send(
notification,
ResponseType::Error(io::Error::from_raw_os_error(libc::ENOSYS)),
)
.expect("Failed to send response");
handle.join().expect("Failed to wait for thread!");
drop(guard);
Ok(())
}
#[tokio::test]
async fn test_raw_error() -> Result<(), io::Error> {
// Lock so we don't trash the global state of libseccomp with concurrent accesses
let guard = SECCOMP_MUTEX.lock().unwrap();
let (fd_tx, fd_rx) = oneshot::channel::<ScmpFd>();
let handle = run_with_seccomp(fd_tx, move || {
let mut n = unsafe { std::mem::zeroed() };
let r = cvt(unsafe { libc::uname(&mut n) });
assert!(matches!(r, Err(e) if e.kind() == ErrorKind::Unsupported));
});
let fd = fd_rx.await.expect("Did not receive FD!");
let mut stream =
NotificationStream::new(fd).expect("Failed to construct NotificationStream");
let notification = tokio::time::timeout(Duration::from_secs(5), stream.next())
.await
.expect("Did not receive a notification in time!")
.unwrap();
assert!(matches!(notification.syscall, Sysno::uname));
stream
.send(notification, ResponseType::RawError(libc::ENOSYS))
.expect("Failed to send response");
handle.join().expect("Failed to wait for thread!");
drop(guard);
Ok(())
}
#[tokio::test]
async fn test_continue() -> Result<(), io::Error> {
// Lock so we don't trash the global state of libseccomp with concurrent accesses
let guard = SECCOMP_MUTEX.lock().unwrap();
let (fd_tx, fd_rx) = oneshot::channel::<ScmpFd>();
let handle = run_with_seccomp(fd_tx, move || {
let mut n = unsafe { std::mem::zeroed() };
let r = unsafe { libc::uname(&mut n) };
assert_eq!(r, 0);
unsafe { CStr::from_ptr(&n.sysname[0]) }
.to_str()
.expect("Invalid UTF-8 reply!")
.to_owned()
});
let fd = fd_rx.await.expect("Did not receive FD!");
let mut stream =
NotificationStream::new(fd).expect("Failed to construct NotificationStream");
let notification = tokio::time::timeout(Duration::from_secs(5), stream.next())
.await
.expect("Did not receive a notification in time!")
.unwrap();
assert!(matches!(notification.syscall, Sysno::uname));
unsafe { stream.send_continue(notification) }.expect("Failed to send response");
let sysname = handle.join().expect("Failed to wait for thread!");
assert_eq!(sysname, "Linux");
drop(guard);
Ok(())
}
#[tokio::test]
async fn test_continue_recv() -> Result<(), io::Error> {
// Lock so we don't trash the global state of libseccomp with concurrent accesses
let guard = SECCOMP_MUTEX.lock().unwrap();
let (fd_tx, fd_rx) = oneshot::channel::<ScmpFd>();
let handle = run_with_seccomp(fd_tx, move || {
let mut n = unsafe { std::mem::zeroed() };
let r = unsafe { libc::uname(&mut n) };
assert_eq!(r, 0);
unsafe { CStr::from_ptr(&n.sysname[0]) }
.to_str()
.expect("Invalid UTF-8 reply!")
.to_owned()
});
let fd = fd_rx.await.expect("Did not receive FD!");
let stream = NotificationStream::new(fd).expect("Failed to construct NotificationStream");
let notification = tokio::time::timeout(Duration::from_secs(5), stream.recv())
.await
.expect("Did not receive a notification in time!")
.unwrap();
assert!(matches!(notification.syscall, Sysno::uname));
unsafe { stream.send_continue(notification) }.expect("Failed to send response");
let sysname = handle.join().expect("Failed to wait for thread!");
assert_eq!(sysname, "Linux");
drop(guard);
Ok(())
}
#[tokio::test]
async fn test_intercept() -> Result<(), io::Error> {
// Lock so we don't trash the global state of libseccomp with concurrent accesses
let guard = SECCOMP_MUTEX.lock().unwrap();
let (fd_tx, fd_rx) = oneshot::channel::<ScmpFd>();
let handle = run_with_seccomp(fd_tx, move || {
let mut n = unsafe { std::mem::zeroed() };
let r = unsafe { libc::uname(&mut n) };
assert_eq!(r, 0);
unsafe { CStr::from_ptr(&n.sysname[0]) }
.to_str()
.expect("Invalid UTF-8 reply!")
.to_owned()
});
let fd = fd_rx.await.expect("Did not receive FD!");
let mut stream =
NotificationStream::new(fd).expect("Failed to construct NotificationStream");
let notification = tokio::time::timeout(Duration::from_secs(5), stream.next())
.await
.expect("Did not receive a notification in time!")
.unwrap();
assert!(matches!(notification.syscall, Sysno::uname));
let mut file = unsafe { notification.open() }.expect("Failed to open memory!");
file.seek(SeekFrom::Start(notification.args[0]))
.expect("Failed to seek!");
file.write_all(b"seccomp")
.expect("Failed to write spoofed reply!");
stream
.send(notification, ResponseType::Success(0))
.expect("Failed to send response");
let sysname = handle.join().expect("Failed to wait for thread!");
assert_eq!(sysname, "seccomp");
drop(guard);
Ok(())
}
#[tokio::test]
async fn test_parallel() -> Result<(), io::Error> {
// Lock so we don't trash the global state of libseccomp with concurrent accesses
let guard = SECCOMP_MUTEX.lock().unwrap();
let (fd_tx, fd_rx) = oneshot::channel::<ScmpFd>();
let handle = run_with_seccomp(fd_tx, move || {
let first = std::thread::spawn(move || {
for _ in 0..20 {
let mut n = unsafe { std::mem::zeroed() };
let r = unsafe { libc::uname(&mut n) };
assert_eq!(r, 0);
}
});
let second = std::thread::spawn(move || {
for _ in 0..20 {
let mut n = unsafe { std::mem::zeroed() };
let r = unsafe { libc::uname(&mut n) };
assert_eq!(r, 0);
}
});
first.join().unwrap();
second.join().unwrap();
});
let fd = fd_rx.await.expect("Did not receive FD!");
let mut stream =
NotificationStream::new(fd).expect("Failed to construct NotificationStream");
let counter = AtomicUsize::new(0);
while let Some(notification) = stream.next().await {
counter.fetch_add(1, Ordering::Relaxed);
unsafe { stream.send_continue(notification) }.unwrap();
}
assert_eq!(counter.into_inner(), 40);
handle.join().unwrap();
drop(guard);
Ok(())
}
}