sdio_sdhc 0.2.3

A simple driver to drive sdhc over SDIO, no filesystem, only test stm32f407 board,other stm32f4xx boards have no test
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
use crate::sdio_dma;
use stm32f4xx_hal::stm32;

/// define response type
#[derive(Clone, Copy)]
pub enum ResponseType {
    NoResponse,
    ShortResponse,
    LongResponse,
}

/// define cmd error
#[derive(Clone, Copy, Debug)]
pub enum CmdError {
    REXOVERR,
    TXUNDERR,
    DTIMEOUT,
    CTIMEOUT,
    DCRCFAIL,
    CCRCFAIL,
    NoFindCard
}

/// define read or write operation
enum Operation {
    Read,
    Write,
}

/// init sdio
fn sdio_init() {
    let rcc = unsafe {
        &*stm32::RCC::ptr()
    };

    let sdio = unsafe {
        &*stm32::SDIO::ptr()
    };

    // sdio enable
    rcc.apb2enr.modify(|_r, w| w.sdioen().set_bit());

    // set init clock 400Khz, 48MHz / 400KHz - 2 = 118, clock enable
    sdio.clkcr.write(|w| unsafe { w.clkdiv().bits(118).clken().set_bit() });

    // 0b11 = 3, power on
    sdio.power.write(|w| unsafe { w.pwrctrl().bits(3) });
}

#[derive(Debug, Copy, Clone)]
pub struct Card {
    pub capacity: u32,
    block_size: u32,
    rca: u16,
}

impl Card {
    /// init sdcard (sdhc)
    pub fn init() -> Result<Card, CmdError> {
        sdio_init();
        sdio_dma::init();

        // send cmd0 into IDLE STAGE mode , no argument, no response
        cmd_send(0, 0, ResponseType::NoResponse);

        // send cmd8 to check card type, argument 0x000001AA, short response
        cmd_send(8, 0x000001AA, ResponseType::ShortResponse);
        let _drop = read_response(ResponseType::ShortResponse)?;

        // wait card has power to ready
        for i in 0..0xFF {
            // send acmd 41 to check sdcard ready state, argument 0x80100000 | 0x40000000, short response
            acmd_send(41, 0, 0x80100000 | 0x40000000, ResponseType::ShortResponse)?;
            let resp = read_response(ResponseType::ShortResponse)?;

            // check voltage
            if resp.1[0] >> 31 == 1 {
                break;
            }

            if i == 0xFF - 1 {
                return Err(CmdError::NoFindCard);
            }
        }

        // send cmd 2 to get CID, no argument, long response
        cmd_send(2, 0, ResponseType::LongResponse);
        let _drop = read_response(ResponseType::LongResponse)?;

        // send cmd 3 to get RCA, no argument, short response
        cmd_send(3, 0, ResponseType::ShortResponse);
        let rca = read_response(ResponseType::ShortResponse)?;
        let rca = (rca.1[0] >> 16) as u16;

        // send cmd 9 to get CSD, argument RCA, long response
        cmd_send(9, (rca as u32) << 16, ResponseType::LongResponse);
        let csd = read_response(ResponseType::LongResponse)?;

        // get card_capacity
        let temp1 = (csd.1[1] & 0xFFFF0000) >> 16;
        let temp2 = (csd.1[2] & 0x3F) << 16;
        let card_capacity = ((temp2 | temp1) + 1) * 512 * 1024;

        select_card((rca as u32) << 16)?;
        enable_wide_bus((rca as u32) << 16)?;
        switch_work_clock();

        Ok(Card {
            capacity: card_capacity,
            block_size: 512,
            rca,
        })
    }

    /// read block
    pub fn read_block(&self, buf: &mut [u8], address: u32) -> Result<(), CmdError> {
        wait_card_programming(self.rca)?;
        set_block_size(self.block_size)?;

        sdio_dma::peripheral_to_memory(buf);
        data_control(self.block_size, self.block_size, Operation::Read);

        // send cmd 17 to read block data, argument block address, short response
        cmd_send(17, address / self.block_size, ResponseType::ShortResponse);
        let _drop = read_response(ResponseType::ShortResponse)?;

        while !sdio_dma::stream3_transfer_complete() {}
        loop {
            if get_datacount() == 0 {
                clean_all_state();
                break;
            }
        }

        Ok(())
    }

    /// read multi blocks
    pub fn read_multi_blocks(&self, buf: &mut [u8], address: u32, number_of_blocks: u32) -> Result<(), CmdError> {
        wait_card_programming(self.rca)?;
        set_block_size(self.block_size)?;

        sdio_dma::peripheral_to_memory(buf);
        data_control(self.block_size * number_of_blocks, self.block_size, Operation::Read);

        // send cmd 18 to read multi blocks data, argument block address, short response
        cmd_send(18, address / self.block_size, ResponseType::ShortResponse);
        let _drop = read_response(ResponseType::ShortResponse)?;

        while !sdio_dma::stream3_transfer_complete() {}
        loop {
            if get_datacount() == 0 {
                stop_read_or_write()?;
                clean_all_state();
                break;
            }
        }

        Ok(())
    }

    /// write block
    pub fn write_block(&self, buf: &[u8], address: u32) -> Result<(), CmdError> {
        wait_card_programming(self.rca)?;
        set_block_size(self.block_size)?;

        sdio_dma::memory_to_peripheral(buf);

        // send cmd 24 to write block, argument block address, short response
        cmd_send(24, address / self.block_size, ResponseType::ShortResponse);
        let _drop = read_response(ResponseType::ShortResponse)?;
        data_control(self.block_size, self.block_size, Operation::Write);

        while !sdio_dma::stream3_transfer_complete() {}
        loop {
            if get_datacount() == 0 {
                clean_all_state();
                break;
            }
        }

        Ok(())
    }

    /// write multi blocks
    pub fn write_multi_blocks(&self, buf: &[u8], address: u32, number_of_blocks: u32) -> Result<(), CmdError> {
        wait_card_programming(self.rca)?;
        set_block_size(self.block_size)?;

        sdio_dma::memory_to_peripheral(buf);

        // send acmd 23 to erase block data, argument blocks number, short response
        acmd_send(23, (self.rca as u32) << 16, number_of_blocks, ResponseType::ShortResponse)?;
        let _drop = read_response(ResponseType::ShortResponse)?;

        // send cmd 25 to write multi blocks, argument block address, short response
        cmd_send(25, address / self.block_size, ResponseType::ShortResponse);
        let _drop = read_response(ResponseType::ShortResponse)?;

        data_control(self.block_size * number_of_blocks, self.block_size, Operation::Write);

        while !sdio_dma::stream3_transfer_complete() {}
        loop {
            if get_datacount() == 0 {
                stop_read_or_write()?;
                clean_all_state();
                break;
            }
        }

        Ok(())
    }

    pub fn erase(&self, start_address: u32, end_address: u32) -> Result<(), CmdError> {
        wait_card_programming(self.rca)?;
        set_block_size(self.block_size)?;

        // send cmd 32 to set start block address, argument block address, short response
        cmd_send(32, start_address / self.block_size, ResponseType::ShortResponse);
        let _drop = read_response(ResponseType::ShortResponse)?;

        // send cmd 33 to set end block address, argument block address, short response
        cmd_send(33, end_address / self.block_size, ResponseType::ShortResponse);
        let _drop = read_response(ResponseType::ShortResponse)?;

        // send cmd 38 to start erase, argument block address, short response
        cmd_send(38, 0, ResponseType::ShortResponse);
        let _drop = read_response(ResponseType::ShortResponse)?;

        wait_card_programming(self.rca)?;
        clean_all_state();

        Ok(())
    }
}

/// send cmd 12 to stop read or write process, no argument, short response
fn stop_read_or_write() -> Result<(), CmdError> {
    cmd_send(12, 0, ResponseType::ShortResponse);
    let _drop = read_response(ResponseType::ShortResponse)?;
    Ok(())
}

/// send cmd 16 to set card block size, argument block size, short response
fn set_block_size(block_size: u32) -> Result<(), CmdError> {
    cmd_send(16, block_size, ResponseType::ShortResponse);
    let _drop = read_response(ResponseType::ShortResponse)?;
    Ok(())
}

/// send cmd 13 to wait card could program, argument RCA, short response
fn wait_card_programming(rca: u16) -> Result<(), CmdError> {
    loop {
        cmd_send(13, (rca as u32) << 16, ResponseType::ShortResponse);
        let state = read_response(ResponseType::ShortResponse)?;
        if state.1[0] & 0x00000100 != 0 {
            break;
        }
    }
    Ok(())
}

/// send cmd
pub fn cmd_send(cmd: u8, arg: u32, response_type: ResponseType) {
    let ptr = unsafe {
        &*stm32::SDIO::ptr()
    };

    // wait last cmd has been sent
    while cmdact_state() {}

    ptr.arg.write(|w| unsafe { w.cmdarg().bits(arg) });

    let mut bits = cmd as u32;

    // set response type
    match response_type {
        ResponseType::NoResponse => {
            bits = 0b00 << 6 | bits;
        }
        ResponseType::ShortResponse => {
            bits = 0b01 << 6 | bits;
        }
        ResponseType::LongResponse => {
            bits = 0b11 << 6 | bits;
        }
    };

    // enable cmd
    bits = 1 << 10 | bits;
    bits = 1 << 12 | bits;

    ptr.cmd.write(|w| unsafe { w.bits(bits) });
}

/// read response
pub fn read_response(response_type: ResponseType) -> Result<(ResponseType, [u32; 4]), CmdError> {
    let ptr = unsafe {
        &*stm32::SDIO::ptr()
    };

    // check response state
    check_state()?;

    // get response
    let response = match response_type {
        ResponseType::NoResponse => {
            [0, 0, 0, 0]
        }
        ResponseType::ShortResponse => {
            let resp1 = ptr.resp1.read().cardstatus1().bits();
            [resp1, 0, 0, 0]
        }
        ResponseType::LongResponse => {
            let resp1 = ptr.resp1.read().cardstatus1().bits();
            let resp2 = ptr.resp2.read().cardstatus2().bits();
            let resp3 = ptr.resp3.read().cardstatus3().bits();
            let resp4 = ptr.resp4.read().cardstatus4().bits();
            [resp4, resp3, resp2, resp1]
        }
    };

    // clean all response state
    clean_all_state();
    Ok((response_type, response))
}

/// app cmd send
pub fn acmd_send(acmd: u8, cmd_arg: u32, acmd_arg: u32, response_type: ResponseType) -> Result<(), CmdError> {
    // send cmd 55 into app cmd mode, short response
    cmd_send(55, cmd_arg, ResponseType::ShortResponse);
    let _drop = read_response(ResponseType::ShortResponse)?;

    cmd_send(acmd, acmd_arg, response_type);
    Ok(())
}

/// switch to work clock (24Mhz)
fn switch_work_clock() {
    let ptr = unsafe {
        &*stm32::SDIO::ptr()
    };

    ptr.clkcr.modify(|_r, w| w.clken().clear_bit());

    // 24Mhz = 48Mhz / (2 + 0)
    ptr.clkcr.modify(|_r, w| unsafe {
        w.clkdiv().bits(0).clken().set_bit()
    })
}

/// send cmd 7 to select card, argument RCA, short response
fn select_card(rca: u32) -> Result<(), CmdError> {
    cmd_send(7, rca, ResponseType::ShortResponse);
    let _drop = read_response(ResponseType::ShortResponse)?;
    Ok(())
}

/// enable wide bus to work
fn enable_wide_bus(rca: u32) -> Result<(), CmdError> {
    let ptr = unsafe {
        &*stm32::SDIO::ptr()
    };

    ptr.clkcr.modify(|_r, w| w.clken().clear_bit());
    ptr.clkcr.modify(|_r, w| unsafe {
        w.widbus().bits(1).clken().set_bit()
    });

    acmd_send(6, rca, 2, ResponseType::ShortResponse)?;
    let _drop = read_response(ResponseType::ShortResponse)?;

    Ok(())
}

/// set data info
fn data_control(len: u32, block_size: u32, op: Operation) {
    let ptr = unsafe {
        &*stm32::SDIO::ptr()
    };

    let mut block_size = block_size;
    let mut block_bits = 0;

    while block_size != 1 {
        block_size >>= 1;
        block_bits += 1;
    }

    ptr.dtimer.write(|w| unsafe {
        w.datatime().bits(0xFFFFFFFF)
    });

    ptr.dlen.write(|w| unsafe {
        w.datalength().bits(len as u32)
    });

    // set block size (9 => 512), enale DMA mode, block transfer
    let mut bits = (block_bits as u32) << 4 | 1 << 3 | 0 << 2;

    // set transfer dir
    match op {
        Operation::Write => {}
        Operation::Read => {
            bits = bits | 1 << 1;
        }
    }

    // ready to transfer
    bits = bits | 1 << 0;

    ptr.dctrl.write(|w| unsafe { w.bits(bits) });
}

/// clean all response state
fn clean_all_state() {
    let ptr = unsafe {
        &*stm32::SDIO::ptr()
    };

    ptr.icr.write(|w| unsafe {
        w.bits(0x00C007FF)
    });
}

/// check response state
fn check_state() -> Result<(), CmdError> {
    let ptr = unsafe {
        &*stm32::SDIO::ptr()
    };

    // wait last cmd has been sent
    while cmdact_state() {};

    // delay
    for _ in 0..200 {
        cortex_m::asm::nop();
    }

    let status = ptr.sta.read().bits();

    // R3 response has no CCRC, if get reponse return
    if status & 0b1000000 >> 6 == 1 { return Ok(()); }

    if status & 0b000001 >> 0 == 1 { return Err(CmdError::CCRCFAIL); }
    if status & 0b000010 >> 1 == 1 { return Err(CmdError::DCRCFAIL); }
    if status & 0b000100 >> 2 == 1 { return Err(CmdError::CTIMEOUT); }
    if status & 0b001000 >> 3 == 1 { return Err(CmdError::DTIMEOUT); }
    if status & 0b010000 >> 4 == 1 { return Err(CmdError::TXUNDERR); }
    if status & 0b100000 >> 5 == 1 { return Err(CmdError::REXOVERR); }

    Ok(())
}

/// wait last cmd has been sent
pub fn cmdact_state() -> bool {
    let ptr = unsafe {
        &*stm32::SDIO::ptr()
    };
    ptr.sta.read().cmdact().bit()
}

/// get data count, if datacount == 0, data has been sent or received
fn get_datacount() -> u32 {
    let ptr = unsafe {
        &*stm32::SDIO::ptr()
    };
    ptr.dcount.read().datacount().bits()
}