# Scribble   [![Build Status]][actions] [![Latest Version]][crates.io]
[Build Status]: https://img.shields.io/github/actions/workflow/status/itsmontoya/scribble/ci.yaml?branch=main
[actions]: https://github.com/itsmontoya/scribble/actions?query=branch%3Amain
[Latest Version]: https://img.shields.io/crates/v/scribble.svg
[crates.io]: https://crates.io/crates/scribble
Scribble is a fast, lightweight transcription engine written in Rust, built on top of Whisper and designed for both CLI and webserver use.

Scribble will demux/decode **audio *or* video containers** (MP4, MP3, WAV, FLAC, OGG, WebM, MKV, etc.), downmix to mono, and resample to Whisper’s expected 16 kHz — no preprocessing required.
## Goals
- Provide a clean, idiomatic Rust API for audio transcription
- Support multiple output formats (JSON, VTT, plain text, etc.)
- Work equally well as a CLI tool or embedded service
- **Be streaming-first:** designed to support incremental, chunk-based transcription pipelines (live audio, long-running streams, and low-latency workflows)
- **Enable composable pipelines:** VAD → transcription → encoding, with clear extension points for streaming and real-time use cases
- Keep the core simple, explicit, and easy to extend
> Scribble is built with **streaming and real-time transcription** in mind, even when operating on static files today.
## Installation
Clone the repository and build the binaries:
```bash
cargo build --release
```
This will produce the following binaries:
- `scribble-cli` — transcribe audio/video (decodes + normalizes to mono 16 kHz)
- `model-downloader` — download Whisper and VAD models
## model-downloader
`model-downloader` is a small helper CLI for downloading **known-good Whisper and Whisper-VAD models** into a local directory.
### List available models
```bash
cargo run --bin model-downloader -- --list
```
Example output:
```text
Whisper models:
- tiny
- base.en
- large-v3-turbo
- large-v3-turbo-q8_0
...
VAD models:
- silero-v5.1.2
- silero-v6.2.0
```
### Download a model
```bash
cargo run --bin model-downloader -- --name large-v3-turbo
```
By default, models are downloaded into `./models`.
### Download into a custom directory
```bash
cargo run --bin model-downloader -- \
--name silero-v6.2.0 \
--dir /opt/scribble/models
```
Downloads are performed safely:
- written to `*.part`
- fsynced
- atomically renamed into place
## scribble-cli
`scribble-cli` is the main transcription CLI.
It accepts audio or video containers and normalizes them to Whisper’s required mono 16 kHz internally. Provide:
- an input media path (e.g. MP4, MP3, WAV, FLAC, OGG, WebM, MKV) or `-` to stream from stdin
- a Whisper model
- (optionally) a Whisper-VAD model
### Basic transcription (VTT output)
```bash
cargo run --bin scribble-cli -- \
--model ./models/ggml-large-v3-turbo.bin \
--input ./input.mp4
```
Output is written to `stdout` in WebVTT format by default.
### JSON output
```bash
cargo run --bin scribble-cli -- \
--model ./models/ggml-large-v3-turbo.bin \
--input ./input.wav \
--output-type json
```
### Enable voice activity detection (VAD)
```bash
cargo run --bin scribble-cli -- \
--model ./models/ggml-large-v3-turbo.bin \
--vad-model ./models/ggml-silero-v6.2.0.bin \
--enable-vad \
--input ./input.wav
```
When VAD is enabled:
- non-speech regions are suppressed
- if no speech is detected, no output is produced
### Specify language explicitly
```bash
cargo run --bin scribble-cli -- \
--model ./models/ggml-large-v3-turbo.bin \
--input ./input.wav \
--language en
```
If `--language` is omitted, Whisper will auto-detect.
### Write output to a file
```bash
cargo run --bin scribble-cli -- \
--model ./models/ggml-large-v3-turbo.bin \
--input ./input.wav \
--output-type vtt \
> transcript.vtt
```
## Library usage
Scribble is also designed to be embedded as a library.
High-level usage looks like:
```rust
use scribble::{opts::Opts, output_type::OutputType, scribble::Scribble};
use std::fs::File;
let scribble = Scribble::new(
"./models/ggml-large-v3-turbo.bin",
"./models/ggml-silero-v6.2.0.bin",
)?;
let mut input = File::open("audio.wav")?;
let mut output = Vec::new();
let opts = Opts {
enable_translate_to_english: false,
enable_voice_activity_detection: true,
language: None,
output_type: OutputType::Json,
};
scribble.transcribe(&mut input, &mut output, &opts)?;
let json = String::from_utf8(output)?;
println!("{json}");
```
## TODOs
- Expand testing (goal of 80%+ test coverage)
- Update VAD to utilize streaming approach
- Implement the webserver
- Streaming / incremental transcription support
## Status
Scribble is under active development. The API is not yet stable, but the foundations are in place and evolving quickly.
## License
MIT