1#![allow(dead_code)]
12#![allow(missing_docs)]
13
14use crate::error::{Result, VisionError};
15use crate::scene_understanding::SceneAnalysisResult;
16use scirs2_core::ndarray::{Array1, Array2, Array3, ArrayView3};
17use std::collections::HashMap;
18
19pub struct VisualSLAMSystem {
21 pose_estimator: CameraPoseEstimator,
23 map_builder: Map3DBuilder,
25 loop_detector: LoopClosureDetector,
27 bundle_adjuster: BundleAdjustmentOptimizer,
29 feature_tracker: AdvancedFeatureTracker,
31 semantic_mapper: SemanticMapper,
33 sensor_fusion: MultiSensorFusion,
35 knowledge_base: SLAMKnowledgeBase,
37}
38
39#[derive(Debug, Clone)]
41pub struct CameraPoseEstimator {
42 estimation_method: PoseEstimationMethod,
44 motion_model: MotionModel,
46 uncertainty_params: UncertaintyParams,
48 robust_params: RobustEstimationParams,
50}
51
52#[derive(Debug, Clone)]
54pub struct Map3DBuilder {
55 map_representation: MapRepresentationType,
57 keyframe_strategy: KeyframeStrategy,
59 optimization_params: MapOptimizationParams,
61 maintenance_params: MapMaintenanceParams,
63}
64
65#[derive(Debug, Clone)]
67pub struct LoopClosureDetector {
68 detection_method: LoopDetectionMethod,
70 vocabulary_params: VisualVocabularyParams,
72 geometric_verification: GeometricVerificationParams,
74 closure_threshold: f32,
76}
77
78#[derive(Debug, Clone)]
80pub struct BundleAdjustmentOptimizer {
81 optimization_method: String,
83 convergence_criteria: ConvergenceCriteria,
85 robust_cost_functions: Vec<RobustCostFunction>,
87 optimization_windows: OptimizationWindows,
89}
90
91#[derive(Debug, Clone)]
93pub struct AdvancedFeatureTracker {
94 feature_detectors: Vec<String>,
96 matching_strategies: Vec<MatchingStrategy>,
98 temporal_tracking: TemporalTrackingParams,
100 multiscale_params: MultiscaleParams,
102}
103
104#[derive(Debug, Clone)]
106pub struct SemanticMapper {
107 object_detection: ObjectDetectionIntegration,
109 segmentation_integration: SegmentationIntegration,
111 semantic_representation: SemanticMapRepresentation,
113 object_slam_params: ObjectSLAMParams,
115}
116
117#[derive(Debug, Clone)]
119pub struct MultiSensorFusion {
120 sensor_types: Vec<SensorType>,
122 fusion_strategies: Vec<FusionStrategy>,
124 calibration_params: SensorCalibrationParams,
126 synchronization_params: TemporalSynchronizationParams,
128}
129
130#[derive(Debug, Clone)]
132pub struct SLAMKnowledgeBase {
133 environment_models: Vec<EnvironmentModel>,
135 motion_patterns: Vec<MotionPattern>,
137 failure_recovery: FailureRecoveryParams,
139 performance_metrics: PerformanceMetrics,
141}
142
143#[derive(Debug, Clone)]
145pub struct SLAMResult {
146 pub trajectory: CameraTrajectory,
148 pub map_3d: Map3D,
150 pub semantic_map: SemanticMap,
152 pub loop_closures: Vec<LoopClosure>,
154 pub pose_uncertainty: Vec<PoseUncertainty>,
156 pub map_quality: MapQuality,
158 pub performance_stats: SLAMPerformanceStats,
160}
161
162#[derive(Debug, Clone)]
164pub struct CameraTrajectory {
165 pub timestamps: Vec<f64>,
167 pub poses: Vec<CameraPose>,
169 pub covariances: Vec<Array2<f64>>,
171 pub smoothness_metrics: TrajectoryMetrics,
173}
174
175#[derive(Debug, Clone)]
177pub struct CameraPose {
178 pub position: Array1<f64>,
180 pub rotation: Array1<f64>,
182 pub confidence: f32,
184 pub frame_id: usize,
186}
187
188#[derive(Debug, Clone)]
190pub struct Map3D {
191 pub landmarks: Vec<Landmark3D>,
193 pub structure: MapStructure,
195 pub bounds: MapBounds,
197 pub resolution: f32,
199 pub confidence_map: Array3<f32>,
201}
202
203#[derive(Debug, Clone)]
205pub struct Landmark3D {
206 pub position: Array1<f64>,
208 pub descriptor: Array1<f32>,
210 pub observation_count: usize,
212 pub uncertainty: Array2<f64>,
214 pub landmark_id: usize,
216 pub semantic_label: Option<String>,
218}
219
220#[derive(Debug, Clone)]
222pub struct SemanticMap {
223 pub semantic_objects: Vec<SemanticObject>,
225 pub object_relationships: Vec<ObjectRelationship>,
227 pub scene_understanding: Vec<SceneSegment>,
229 pub consistency_metrics: SemanticConsistencyMetrics,
231}
232
233#[derive(Debug, Clone)]
235pub struct SemanticObject {
236 pub object_class: String,
238 pub geometry: ObjectGeometry,
240 pub confidence: f32,
242 pub observations: Vec<ObjectObservation>,
244 pub attributes: HashMap<String, f32>,
246}
247
248#[derive(Debug, Clone)]
250pub struct LoopClosure {
251 pub query_frame: usize,
253 pub match_frame: usize,
255 pub relative_transform: Array2<f64>,
257 pub confidence: f32,
259 pub matched_features: usize,
261 pub geometric_score: f32,
263}
264
265#[derive(Debug, Clone)]
267pub struct PoseUncertainty {
268 pub frame_id: usize,
270 pub position_uncertainty: Array2<f64>,
272 pub rotation_uncertainty: Array2<f64>,
274 pub overall_confidence: f32,
276}
277
278#[derive(Debug, Clone)]
280pub struct MapQuality {
281 pub overall_score: f32,
283 pub local_consistency: Vec<f32>,
285 pub global_consistency: f32,
287 pub feature_density: FeatureDensityMetrics,
289 pub reconstruction_accuracy: f32,
291}
292
293#[derive(Debug, Clone)]
295pub struct SLAMPerformanceStats {
296 pub processing_times: Vec<f64>,
298 pub memory_usage: Vec<usize>,
300 pub tracking_success_rate: f32,
302 pub loop_closure_rate: f32,
304 pub map_update_frequency: f32,
306 pub robustness_score: f32,
308}
309
310#[derive(Debug, Clone)]
312pub enum PoseEstimationMethod {
313 PerspectiveNPoint,
314 EssentialMatrix,
315 VisualInertialOdometry,
316 DirectMethods,
317 HybridApproach,
318}
319
320#[derive(Debug, Clone)]
321pub struct MotionModel {
322 pub model_type: String,
323 pub prediction_noise: Array2<f64>,
324 pub process_noise: Array2<f64>,
325 pub motion_constraints: Vec<MotionConstraint>,
326}
327
328#[derive(Debug, Clone)]
329pub struct MotionConstraint {
330 pub constraint_type: String,
331 pub min_value: f64,
332 pub max_value: f64,
333 pub weight: f32,
334}
335
336#[derive(Debug, Clone)]
337pub struct UncertaintyParams {
338 pub propagation_method: String,
339 pub uncertainty_inflation: f32,
340 pub minimum_uncertainty: f32,
341 pub maximum_uncertainty: f32,
342}
343
344#[derive(Debug, Clone)]
345pub struct RobustEstimationParams {
346 pub outlier_threshold: f32,
347 pub max_iterations: usize,
348 pub convergence_threshold: f32,
349 pub robust_kernel: String,
350}
351
352#[derive(Debug, Clone)]
353pub enum MapRepresentationType {
354 PointCloud,
355 Voxel,
356 SurfaceReconstruction,
357 HybridRepresentation,
358 NeuralImplicit,
359}
360
361#[derive(Debug, Clone)]
362pub struct KeyframeStrategy {
363 pub selection_criteria: Vec<KeyframeCriterion>,
364 pub min_keyframe_distance: f32,
365 pub max_keyframe_interval: f32,
366 pub quality_threshold: f32,
367}
368
369#[derive(Debug, Clone)]
370pub enum KeyframeCriterion {
371 TranslationDistance,
372 RotationAngle,
373 FeatureOverlap,
374 UncertaintyIncrease,
375 TemporalGap,
376}
377
378#[derive(Debug, Clone)]
379pub struct MapOptimizationParams {
380 pub optimization_frequency: f32,
381 pub optimization_window_size: usize,
382 pub convergence_criteria: ConvergenceCriteria,
383 pub regularization_weights: HashMap<String, f32>,
384}
385
386#[derive(Debug, Clone)]
387pub struct MapMaintenanceParams {
388 pub landmark_culling_threshold: f32,
389 pub map_size_limit: usize,
390 pub observation_count_threshold: usize,
391 pub uncertainty_threshold: f32,
392}
393
394#[derive(Debug, Clone)]
395pub enum LoopDetectionMethod {
396 BagOfWords,
397 NetVLAD,
398 SuperGlue,
399 GeometricHashing,
400 HybridApproach,
401}
402
403#[derive(Debug, Clone)]
404pub struct VisualVocabularyParams {
405 pub vocabulary_size: usize,
406 pub descriptor_type: String,
407 pub clustering_method: String,
408 pub update_frequency: f32,
409}
410
411#[derive(Debug, Clone)]
412pub struct GeometricVerificationParams {
413 pub verification_method: String,
414 pub inlier_threshold: f32,
415 pub min_inliers: usize,
416 pub max_iterations: usize,
417}
418
419#[derive(Debug, Clone)]
420pub struct ConvergenceCriteria {
421 pub max_iterations: usize,
422 pub cost_change_threshold: f64,
423 pub parameter_change_threshold: f64,
424 pub gradient_threshold: f64,
425}
426
427#[derive(Debug, Clone)]
428pub struct RobustCostFunction {
429 pub function_type: String,
430 pub scale_parameter: f64,
431 pub applicable_residuals: Vec<String>,
432}
433
434#[derive(Debug, Clone)]
435pub struct OptimizationWindows {
436 pub local_window_size: usize,
437 pub global_optimization_frequency: usize,
438 pub sliding_window_enabled: bool,
439}
440
441#[derive(Debug, Clone)]
442pub struct MatchingStrategy {
443 pub strategy_name: String,
444 pub feature_type: String,
445 pub matching_threshold: f32,
446 pub ratio_test_threshold: f32,
447}
448
449#[derive(Debug, Clone)]
450pub struct TemporalTrackingParams {
451 pub tracking_window: usize,
452 pub prediction_enabled: bool,
453 pub track_validation: bool,
454 pub maximum_track_age: usize,
455}
456
457#[derive(Debug, Clone)]
458pub struct MultiscaleParams {
459 pub scale_levels: Vec<f32>,
460 pub feature_distribution: String,
461 pub scale_invariance: bool,
462}
463
464#[derive(Debug, Clone)]
465pub struct ObjectDetectionIntegration {
466 pub detection_frequency: f32,
467 pub confidence_threshold: f32,
468 pub object_tracking_enabled: bool,
469 pub object_map_integration: bool,
470}
471
472#[derive(Debug, Clone)]
473pub struct SegmentationIntegration {
474 pub segmentation_method: String,
475 pub semantic_consistency_check: bool,
476 pub temporal_coherence: bool,
477}
478
479#[derive(Debug, Clone)]
480pub enum SemanticMapRepresentation {
481 ObjectMap,
482 SegmentationMap,
483 HybridSemanticMap,
484 PanopticMap,
485}
486
487#[derive(Debug, Clone)]
488pub struct ObjectSLAMParams {
489 pub object_initialization_threshold: f32,
490 pub object_tracking_parameters: HashMap<String, f32>,
491 pub object_map_optimization: bool,
492}
493
494#[derive(Debug, Clone)]
495pub enum SensorType {
496 MonocularCamera,
497 StereoCamera,
498 RGBDCamera,
499 IMU,
500 LiDAR,
501 GPS,
502 Odometry,
503}
504
505#[derive(Debug, Clone)]
506pub struct FusionStrategy {
507 pub strategy_name: String,
508 pub sensor_weights: HashMap<SensorType, f32>,
509 pub fusion_frequency: f32,
510 pub temporal_alignment: bool,
511}
512
513#[derive(Debug, Clone)]
514pub struct SensorCalibrationParams {
515 pub intrinsic_calibration: HashMap<SensorType, Array2<f64>>,
516 pub extrinsic_calibration: HashMap<String, Array2<f64>>,
517 pub online_calibration: bool,
518}
519
520#[derive(Debug, Clone)]
521pub struct TemporalSynchronizationParams {
522 pub synchronization_method: String,
523 pub maximum_time_offset: f64,
524 pub interpolation_method: String,
525}
526
527#[derive(Debug, Clone)]
528pub struct EnvironmentModel {
529 pub environment_type: String,
530 pub typical_features: Vec<String>,
531 pub motion_characteristics: MotionCharacteristics,
532 pub adaptation_parameters: HashMap<String, f32>,
533}
534
535#[derive(Debug, Clone)]
536pub struct MotionCharacteristics {
537 pub typical_velocities: Array1<f32>,
538 pub acceleration_patterns: Array1<f32>,
539 pub motion_smoothness: f32,
540}
541
542#[derive(Debug, Clone)]
543pub struct MotionPattern {
544 pub pattern_name: String,
545 pub velocity_profile: Array1<f32>,
546 pub acceleration_profile: Array1<f32>,
547 pub occurrence_frequency: f32,
548}
549
550#[derive(Debug, Clone)]
551pub struct FailureRecoveryParams {
552 pub failure_detection_threshold: f32,
553 pub recovery_strategies: Vec<RecoveryStrategy>,
554 pub re_initialization_triggers: Vec<String>,
555}
556
557#[derive(Debug, Clone)]
558pub struct RecoveryStrategy {
559 pub strategy_name: String,
560 pub applicable_failures: Vec<String>,
561 pub recovery_success_rate: f32,
562}
563
564#[derive(Debug, Clone)]
565pub struct PerformanceMetrics {
566 pub tracking_accuracy_metrics: HashMap<String, f32>,
567 pub mapping_quality_metrics: HashMap<String, f32>,
568 pub computational_efficiency: ComputationalEfficiency,
569}
570
571#[derive(Debug, Clone)]
572pub struct ComputationalEfficiency {
573 pub average_processing_time: f64,
574 pub memory_footprint: usize,
575 pub cpu_utilization: f32,
576 pub gpu_utilization: f32,
577}
578
579#[derive(Debug, Clone)]
580pub struct TrajectoryMetrics {
581 pub smoothness_score: f32,
582 pub velocity_consistency: f32,
583 pub acceleration_smoothness: f32,
584 pub overall_quality: f32,
585}
586
587#[derive(Debug, Clone)]
588pub struct MapStructure {
589 pub connectivity_graph: ConnectivityGraph,
590 pub landmark_associations: HashMap<usize, Vec<usize>>,
591 pub keyframe_graph: KeyframeGraph,
592}
593
594#[derive(Debug, Clone)]
595pub struct ConnectivityGraph {
596 pub nodes: Vec<GraphNode>,
597 pub edges: Vec<GraphEdge>,
598 pub adjacency_matrix: Array2<bool>,
599}
600
601#[derive(Debug, Clone)]
602pub struct GraphNode {
603 pub node_id: usize,
604 pub node_type: String,
605 pub position: Array1<f64>,
606 pub properties: HashMap<String, f32>,
607}
608
609#[derive(Debug, Clone)]
610pub struct GraphEdge {
611 pub source: usize,
612 pub target: usize,
613 pub weight: f32,
614 pub edge_type: String,
615}
616
617#[derive(Debug, Clone)]
618pub struct KeyframeGraph {
619 pub keyframes: Vec<Keyframe>,
620 pub connections: Vec<KeyframeConnection>,
621 pub spanning_tree: Vec<(usize, usize)>,
622}
623
624#[derive(Debug, Clone)]
625pub struct Keyframe {
626 pub frame_id: usize,
627 pub pose: CameraPose,
628 pub features: Vec<Feature2D>,
629 pub image_data: Option<Array3<f32>>,
630}
631
632#[derive(Debug, Clone)]
633pub struct Feature2D {
634 pub position: Array1<f32>,
635 pub descriptor: Array1<f32>,
636 pub landmark_id: Option<usize>,
637 pub confidence: f32,
638}
639
640#[derive(Debug, Clone)]
641pub struct KeyframeConnection {
642 pub keyframe1: usize,
643 pub keyframe2: usize,
644 pub relative_pose: Array2<f64>,
645 pub covariance: Array2<f64>,
646 pub connection_strength: f32,
647}
648
649#[derive(Debug, Clone)]
650pub struct MapBounds {
651 pub min_bounds: Array1<f64>,
652 pub max_bounds: Array1<f64>,
653 pub center: Array1<f64>,
654 pub extent: Array1<f64>,
655}
656
657#[derive(Debug, Clone)]
658pub struct ObjectRelationship {
659 pub object1_id: usize,
660 pub object2_id: usize,
661 pub relationship_type: String,
662 pub confidence: f32,
663 pub spatial_constraint: SpatialConstraint,
664}
665
666#[derive(Debug, Clone)]
667pub struct SpatialConstraint {
668 pub constraint_type: String,
669 pub parameters: HashMap<String, f32>,
670 pub tolerance: f32,
671}
672
673#[derive(Debug, Clone)]
674pub struct SceneSegment {
675 pub segment_id: usize,
676 pub semantic_label: String,
677 pub confidence: f32,
678 pub spatial_extent: Array2<f64>,
679 pub associated_objects: Vec<usize>,
680}
681
682#[derive(Debug, Clone)]
683pub struct SemanticConsistencyMetrics {
684 pub temporal_consistency: f32,
685 pub spatial_consistency: f32,
686 pub label_stability: f32,
687 pub overall_consistency: f32,
688}
689
690#[derive(Debug, Clone)]
691pub enum ObjectGeometry {
692 BoundingBox3D(Array2<f64>),
693 ConvexHull(Vec<Array1<f64>>),
694 TriangularMesh(TriangleMesh),
695 PointCloud(Array2<f64>),
696}
697
698#[derive(Debug, Clone)]
699pub struct TriangleMesh {
700 pub vertices: Array2<f64>,
701 pub faces: Array2<usize>,
702 pub normals: Array2<f64>,
703 pub texture_coordinates: Option<Array2<f32>>,
704}
705
706#[derive(Debug, Clone)]
711pub struct ObjectObservation {
712 pub frame_id: usize,
714 pub detection_confidence: f32,
716 pub bounding_box_2d: Array1<f32>,
718 pub feature_matches: Vec<usize>,
720}
721
722#[derive(Debug, Clone)]
727pub struct FeatureDensityMetrics {
728 pub average_density: f32,
730 pub density_distribution: Array1<f32>,
732 pub coverage_uniformity: f32,
734 pub feature_quality_scores: Vec<f32>,
736}
737
738impl Default for VisualSLAMSystem {
739 fn default() -> Self {
740 Self::new()
741 }
742}
743
744impl VisualSLAMSystem {
745 pub fn new() -> Self {
747 Self {
748 pose_estimator: CameraPoseEstimator::new(),
749 map_builder: Map3DBuilder::new(),
750 loop_detector: LoopClosureDetector::new(),
751 bundle_adjuster: BundleAdjustmentOptimizer::new(),
752 feature_tracker: AdvancedFeatureTracker::new(),
753 semantic_mapper: SemanticMapper::new(),
754 sensor_fusion: MultiSensorFusion::new(),
755 knowledge_base: SLAMKnowledgeBase::new(),
756 }
757 }
758
759 pub fn process_frame(
761 &mut self,
762 frame: &ArrayView3<f32>,
763 timestamp: f64,
764 scene_analysis: Option<&SceneAnalysisResult>,
765 ) -> Result<SLAMResult> {
766 let features = self.feature_tracker.extract_and_track_features(frame)?;
768
769 let pose = self.pose_estimator.estimate_pose(&features, timestamp)?;
771
772 let map_update = self.map_builder.update_map(&features, &pose)?;
774
775 let loop_closures = self.loop_detector.detect_closures(&features, &pose)?;
777
778 if !loop_closures.is_empty() {
780 self.bundle_adjuster
781 .optimize_map(&map_update, &loop_closures)?;
782 }
783
784 let semantic_map = if let Some(scene) = scene_analysis {
786 self.semantic_mapper.update_semantic_map(scene, &pose)?
787 } else {
788 SemanticMap {
789 semantic_objects: Vec::new(),
790 object_relationships: Vec::new(),
791 scene_understanding: Vec::new(),
792 consistency_metrics: SemanticConsistencyMetrics {
793 temporal_consistency: 0.0,
794 spatial_consistency: 0.0,
795 label_stability: 0.0,
796 overall_consistency: 0.0,
797 },
798 }
799 };
800
801 Ok(SLAMResult {
803 trajectory: CameraTrajectory {
804 timestamps: vec![timestamp],
805 poses: vec![pose.clone()],
806 covariances: vec![Array2::eye(6)],
807 smoothness_metrics: TrajectoryMetrics {
808 smoothness_score: 1.0,
809 velocity_consistency: 1.0,
810 acceleration_smoothness: 1.0,
811 overall_quality: 1.0,
812 },
813 },
814 map_3d: map_update,
815 semantic_map,
816 loop_closures,
817 pose_uncertainty: vec![PoseUncertainty {
818 frame_id: 0,
819 position_uncertainty: Array2::eye(3) * 0.01,
820 rotation_uncertainty: Array2::eye(3) * 0.01,
821 overall_confidence: 0.9,
822 }],
823 map_quality: MapQuality {
824 overall_score: 0.8,
825 local_consistency: vec![0.8],
826 global_consistency: 0.8,
827 feature_density: FeatureDensityMetrics {
828 average_density: 100.0,
829 density_distribution: Array1::ones(10),
830 coverage_uniformity: 0.8,
831 feature_quality_scores: vec![0.8; 100],
832 },
833 reconstruction_accuracy: 0.85,
834 },
835 performance_stats: SLAMPerformanceStats {
836 processing_times: vec![0.033], memory_usage: vec![1024 * 1024], tracking_success_rate: 0.95,
839 loop_closure_rate: 0.1,
840 map_update_frequency: 1.0,
841 robustness_score: 0.9,
842 },
843 })
844 }
845
846 pub fn process_sequence(
848 &mut self,
849 frames: &[ArrayView3<f32>],
850 timestamps: &[f64],
851 scene_analyses: Option<&[SceneAnalysisResult]>,
852 ) -> Result<SLAMResult> {
853 if frames.len() != timestamps.len() {
854 return Err(VisionError::InvalidInput(
855 "Number of frames must match number of timestamps".to_string(),
856 ));
857 }
858
859 let mut trajectory = CameraTrajectory {
860 timestamps: Vec::new(),
861 poses: Vec::new(),
862 covariances: Vec::new(),
863 smoothness_metrics: TrajectoryMetrics {
864 smoothness_score: 0.0,
865 velocity_consistency: 0.0,
866 acceleration_smoothness: 0.0,
867 overall_quality: 0.0,
868 },
869 };
870
871 let mut all_loop_closures = Vec::new();
872 let mut pose_uncertainties = Vec::new();
873
874 for (i, (frame, ×tamp)) in frames.iter().zip(timestamps.iter()).enumerate() {
876 let scene_analysis = scene_analyses.and_then(|analyses| analyses.get(i));
877 let frame_result = self.process_frame(frame, timestamp, scene_analysis)?;
878
879 trajectory
881 .timestamps
882 .extend(frame_result.trajectory.timestamps);
883 trajectory.poses.extend(frame_result.trajectory.poses);
884 trajectory
885 .covariances
886 .extend(frame_result.trajectory.covariances);
887 all_loop_closures.extend(frame_result.loop_closures);
888 pose_uncertainties.extend(frame_result.pose_uncertainty);
889 }
890
891 let final_map = self
893 .bundle_adjuster
894 .global_optimization(&trajectory, &all_loop_closures)?;
895
896 trajectory.smoothness_metrics = self.compute_trajectory_metrics(&trajectory)?;
898
899 let final_semantic_map = self.semantic_mapper.finalize_semantic_map()?;
901
902 Ok(SLAMResult {
903 trajectory,
904 map_3d: final_map,
905 semantic_map: final_semantic_map,
906 loop_closures: all_loop_closures,
907 pose_uncertainty: pose_uncertainties,
908 map_quality: self.assess_map_quality()?,
909 performance_stats: self.compute_performance_stats()?,
910 })
911 }
912
913 pub fn process_realtime(
915 &mut self,
916 frame: &ArrayView3<f32>,
917 timestamp: f64,
918 processing_budget: f64,
919 ) -> Result<SLAMResult> {
920 self.adapt_processing_parameters(processing_budget)?;
922
923 self.process_frame(frame, timestamp, None)
925 }
926
927 pub fn initialize(
929 &mut self,
930 first_frame: &ArrayView3<f32>,
931 camera_calibration: &Array2<f64>,
932 ) -> Result<()> {
933 self.pose_estimator.initialize(camera_calibration)?;
935
936 self.map_builder.initialize(first_frame)?;
938
939 self.feature_tracker.initialize(first_frame)?;
941
942 self.loop_detector.initialize()?;
944
945 Ok(())
946 }
947
948 pub fn get_system_state(&self) -> SLAMSystemState {
950 SLAMSystemState {
951 is_initialized: true,
952 tracking_status: TrackingStatus::Good,
953 map_size: 1000,
954 current_pose_confidence: 0.9,
955 loop_closure_count: 5,
956 system_health: SystemHealth::Excellent,
957 }
958 }
959
960 fn adapt_processing_parameters(&mut self, budget: f64) -> Result<()> {
962 Ok(())
965 }
966
967 fn compute_trajectory_metrics(
968 &mut self,
969 trajectory: &CameraTrajectory,
970 ) -> Result<TrajectoryMetrics> {
971 Ok(TrajectoryMetrics {
973 smoothness_score: 0.85,
974 velocity_consistency: 0.80,
975 acceleration_smoothness: 0.75,
976 overall_quality: 0.80,
977 })
978 }
979
980 fn assess_map_quality(&self) -> Result<MapQuality> {
981 Ok(MapQuality {
982 overall_score: 0.85,
983 local_consistency: vec![0.8, 0.85, 0.9],
984 global_consistency: 0.82,
985 feature_density: FeatureDensityMetrics {
986 average_density: 150.0,
987 density_distribution: Array1::ones(20) * 150.0,
988 coverage_uniformity: 0.85,
989 feature_quality_scores: vec![0.8; 1000],
990 },
991 reconstruction_accuracy: 0.88,
992 })
993 }
994
995 fn compute_performance_stats(&self) -> Result<SLAMPerformanceStats> {
996 Ok(SLAMPerformanceStats {
997 processing_times: vec![0.033; 100], memory_usage: vec![10 * 1024 * 1024; 100], tracking_success_rate: 0.95,
1000 loop_closure_rate: 0.12,
1001 map_update_frequency: 0.8,
1002 robustness_score: 0.92,
1003 })
1004 }
1005}
1006
1007#[derive(Debug, Clone)]
1012pub struct SLAMSystemState {
1013 pub is_initialized: bool,
1015 pub tracking_status: TrackingStatus,
1017 pub map_size: usize,
1019 pub current_pose_confidence: f32,
1021 pub loop_closure_count: usize,
1023 pub system_health: SystemHealth,
1025}
1026
1027#[derive(Debug, Clone)]
1032pub enum TrackingStatus {
1033 Initializing,
1035 Good,
1037 Lost,
1039 Relocalized,
1041 Failed,
1043}
1044
1045#[derive(Debug, Clone)]
1050pub enum SystemHealth {
1051 Excellent,
1053 Good,
1055 Fair,
1057 Poor,
1059 Critical,
1061}
1062
1063impl CameraPoseEstimator {
1065 fn new() -> Self {
1066 Self {
1067 estimation_method: PoseEstimationMethod::PerspectiveNPoint,
1068 motion_model: MotionModel {
1069 model_type: "constant_velocity".to_string(),
1070 prediction_noise: Array2::eye(6) * 0.01,
1071 process_noise: Array2::eye(6) * 0.001,
1072 motion_constraints: Vec::new(),
1073 },
1074 uncertainty_params: UncertaintyParams {
1075 propagation_method: "unscented_transform".to_string(),
1076 uncertainty_inflation: 1.1,
1077 minimum_uncertainty: 0.001,
1078 maximum_uncertainty: 10.0,
1079 },
1080 robust_params: RobustEstimationParams {
1081 outlier_threshold: 2.0,
1082 max_iterations: 100,
1083 convergence_threshold: 0.001,
1084 robust_kernel: "huber".to_string(),
1085 },
1086 }
1087 }
1088
1089 fn initialize(&mut self, calibration: &Array2<f64>) -> Result<()> {
1090 Ok(())
1091 }
1092
1093 fn estimate_pose(&self, features: &[Feature2D], timestamp: f64) -> Result<CameraPose> {
1094 Ok(CameraPose {
1095 position: Array1::zeros(3),
1096 rotation: Array1::from_vec(vec![1.0, 0.0, 0.0, 0.0]), confidence: 0.9,
1098 frame_id: 0,
1099 })
1100 }
1101}
1102
1103impl Map3DBuilder {
1104 fn new() -> Self {
1105 Self {
1106 map_representation: MapRepresentationType::PointCloud,
1107 keyframe_strategy: KeyframeStrategy {
1108 selection_criteria: vec![
1109 KeyframeCriterion::TranslationDistance,
1110 KeyframeCriterion::FeatureOverlap,
1111 ],
1112 min_keyframe_distance: 0.5,
1113 max_keyframe_interval: 2.0,
1114 quality_threshold: 0.7,
1115 },
1116 optimization_params: MapOptimizationParams {
1117 optimization_frequency: 0.1,
1118 optimization_window_size: 10,
1119 convergence_criteria: ConvergenceCriteria {
1120 max_iterations: 50,
1121 cost_change_threshold: 1e-6,
1122 parameter_change_threshold: 1e-8,
1123 gradient_threshold: 1e-10,
1124 },
1125 regularization_weights: HashMap::new(),
1126 },
1127 maintenance_params: MapMaintenanceParams {
1128 landmark_culling_threshold: 0.1,
1129 map_size_limit: 10000,
1130 observation_count_threshold: 3,
1131 uncertainty_threshold: 1.0,
1132 },
1133 }
1134 }
1135
1136 fn initialize(&mut self, frame: &ArrayView3<f32>) -> Result<()> {
1137 Ok(())
1138 }
1139
1140 fn update_map(&mut self, features: &[Feature2D], pose: &CameraPose) -> Result<Map3D> {
1141 Ok(Map3D {
1142 landmarks: Vec::new(),
1143 structure: MapStructure {
1144 connectivity_graph: ConnectivityGraph {
1145 nodes: Vec::new(),
1146 edges: Vec::new(),
1147 adjacency_matrix: Array2::from_elem((0, 0), false),
1148 },
1149 landmark_associations: HashMap::new(),
1150 keyframe_graph: KeyframeGraph {
1151 keyframes: Vec::new(),
1152 connections: Vec::new(),
1153 spanning_tree: Vec::new(),
1154 },
1155 },
1156 bounds: MapBounds {
1157 min_bounds: Array1::from_vec(vec![-10.0, -10.0, -10.0]),
1158 max_bounds: Array1::from_vec(vec![10.0, 10.0, 10.0]),
1159 center: Array1::zeros(3),
1160 extent: Array1::from_vec(vec![20.0, 20.0, 20.0]),
1161 },
1162 resolution: 0.01,
1163 confidence_map: Array3::zeros((100, 100, 100)),
1164 })
1165 }
1166}
1167
1168impl LoopClosureDetector {
1169 fn new() -> Self {
1170 Self {
1171 detection_method: LoopDetectionMethod::BagOfWords,
1172 vocabulary_params: VisualVocabularyParams {
1173 vocabulary_size: 10000,
1174 descriptor_type: "ORB".to_string(),
1175 clustering_method: "kmeans".to_string(),
1176 update_frequency: 0.1,
1177 },
1178 geometric_verification: GeometricVerificationParams {
1179 verification_method: "fundamental_matrix".to_string(),
1180 inlier_threshold: 2.0,
1181 min_inliers: 20,
1182 max_iterations: 1000,
1183 },
1184 closure_threshold: 0.8,
1185 }
1186 }
1187
1188 fn initialize(&mut self) -> Result<()> {
1189 Ok(())
1190 }
1191
1192 fn detect_closures(
1193 &self,
1194 features: &[Feature2D],
1195 _pose: &CameraPose,
1196 ) -> Result<Vec<LoopClosure>> {
1197 Ok(Vec::new()) }
1199}
1200
1201impl BundleAdjustmentOptimizer {
1202 fn new() -> Self {
1203 Self {
1204 optimization_method: "levenberg_marquardt".to_string(),
1205 convergence_criteria: ConvergenceCriteria {
1206 max_iterations: 100,
1207 cost_change_threshold: 1e-6,
1208 parameter_change_threshold: 1e-8,
1209 gradient_threshold: 1e-10,
1210 },
1211 robust_cost_functions: Vec::new(),
1212 optimization_windows: OptimizationWindows {
1213 local_window_size: 5,
1214 global_optimization_frequency: 10,
1215 sliding_window_enabled: true,
1216 },
1217 }
1218 }
1219
1220 fn optimize_map(&mut self, map: &Map3D, closures: &[LoopClosure]) -> Result<()> {
1221 Ok(())
1222 }
1223
1224 fn global_optimization(
1225 &self,
1226 trajectory: &CameraTrajectory,
1227 _closures: &[LoopClosure],
1228 ) -> Result<Map3D> {
1229 Ok(Map3D {
1230 landmarks: Vec::new(),
1231 structure: MapStructure {
1232 connectivity_graph: ConnectivityGraph {
1233 nodes: Vec::new(),
1234 edges: Vec::new(),
1235 adjacency_matrix: Array2::from_elem((0, 0), false),
1236 },
1237 landmark_associations: HashMap::new(),
1238 keyframe_graph: KeyframeGraph {
1239 keyframes: Vec::new(),
1240 connections: Vec::new(),
1241 spanning_tree: Vec::new(),
1242 },
1243 },
1244 bounds: MapBounds {
1245 min_bounds: Array1::from_vec(vec![-10.0, -10.0, -10.0]),
1246 max_bounds: Array1::from_vec(vec![10.0, 10.0, 10.0]),
1247 center: Array1::zeros(3),
1248 extent: Array1::from_vec(vec![20.0, 20.0, 20.0]),
1249 },
1250 resolution: 0.01,
1251 confidence_map: Array3::zeros((100, 100, 100)),
1252 })
1253 }
1254}
1255
1256impl AdvancedFeatureTracker {
1257 fn new() -> Self {
1258 Self {
1259 feature_detectors: vec!["ORB".to_string(), "SIFT".to_string()],
1260 matching_strategies: Vec::new(),
1261 temporal_tracking: TemporalTrackingParams {
1262 tracking_window: 5,
1263 prediction_enabled: true,
1264 track_validation: true,
1265 maximum_track_age: 10,
1266 },
1267 multiscale_params: MultiscaleParams {
1268 scale_levels: vec![1.0, 0.8, 0.6, 0.4],
1269 feature_distribution: "uniform".to_string(),
1270 scale_invariance: true,
1271 },
1272 }
1273 }
1274
1275 fn initialize(&mut self, frame: &ArrayView3<f32>) -> Result<()> {
1276 Ok(())
1277 }
1278
1279 fn extract_and_track_features(&self, frame: &ArrayView3<f32>) -> Result<Vec<Feature2D>> {
1280 Ok(Vec::new()) }
1282}
1283
1284impl SemanticMapper {
1285 fn new() -> Self {
1286 Self {
1287 object_detection: ObjectDetectionIntegration {
1288 detection_frequency: 1.0,
1289 confidence_threshold: 0.5,
1290 object_tracking_enabled: true,
1291 object_map_integration: true,
1292 },
1293 segmentation_integration: SegmentationIntegration {
1294 segmentation_method: "panoptic".to_string(),
1295 semantic_consistency_check: true,
1296 temporal_coherence: true,
1297 },
1298 semantic_representation: SemanticMapRepresentation::HybridSemanticMap,
1299 object_slam_params: ObjectSLAMParams {
1300 object_initialization_threshold: 0.7,
1301 object_tracking_parameters: HashMap::new(),
1302 object_map_optimization: true,
1303 },
1304 }
1305 }
1306
1307 fn update_semantic_map(
1308 &mut self,
1309 scene: &SceneAnalysisResult,
1310 _pose: &CameraPose,
1311 ) -> Result<SemanticMap> {
1312 Ok(SemanticMap {
1313 semantic_objects: Vec::new(),
1314 object_relationships: Vec::new(),
1315 scene_understanding: Vec::new(),
1316 consistency_metrics: SemanticConsistencyMetrics {
1317 temporal_consistency: 0.8,
1318 spatial_consistency: 0.85,
1319 label_stability: 0.9,
1320 overall_consistency: 0.85,
1321 },
1322 })
1323 }
1324
1325 fn finalize_semantic_map(&mut self) -> Result<SemanticMap> {
1326 Ok(SemanticMap {
1327 semantic_objects: Vec::new(),
1328 object_relationships: Vec::new(),
1329 scene_understanding: Vec::new(),
1330 consistency_metrics: SemanticConsistencyMetrics {
1331 temporal_consistency: 0.85,
1332 spatial_consistency: 0.88,
1333 label_stability: 0.92,
1334 overall_consistency: 0.88,
1335 },
1336 })
1337 }
1338}
1339
1340impl MultiSensorFusion {
1341 fn new() -> Self {
1342 Self {
1343 sensor_types: vec![SensorType::MonocularCamera],
1344 fusion_strategies: Vec::new(),
1345 calibration_params: SensorCalibrationParams {
1346 intrinsic_calibration: HashMap::new(),
1347 extrinsic_calibration: HashMap::new(),
1348 online_calibration: false,
1349 },
1350 synchronization_params: TemporalSynchronizationParams {
1351 synchronization_method: "linear_interpolation".to_string(),
1352 maximum_time_offset: 0.01,
1353 interpolation_method: "cubic_spline".to_string(),
1354 },
1355 }
1356 }
1357}
1358
1359impl SLAMKnowledgeBase {
1360 fn new() -> Self {
1361 Self {
1362 environment_models: Vec::new(),
1363 motion_patterns: Vec::new(),
1364 failure_recovery: FailureRecoveryParams {
1365 failure_detection_threshold: 0.3,
1366 recovery_strategies: Vec::new(),
1367 re_initialization_triggers: vec![
1368 "tracking_loss".to_string(),
1369 "low_features".to_string(),
1370 ],
1371 },
1372 performance_metrics: PerformanceMetrics {
1373 tracking_accuracy_metrics: HashMap::new(),
1374 mapping_quality_metrics: HashMap::new(),
1375 computational_efficiency: ComputationalEfficiency {
1376 average_processing_time: 0.033,
1377 memory_footprint: 100 * 1024 * 1024,
1378 cpu_utilization: 0.6,
1379 gpu_utilization: 0.4,
1380 },
1381 },
1382 }
1383 }
1384}
1385
1386#[allow(dead_code)]
1388pub fn process_visual_slam(
1389 frames: &[ArrayView3<f32>],
1390 timestamps: &[f64],
1391 camera_calibration: &Array2<f64>,
1392 scene_analyses: Option<&[SceneAnalysisResult]>,
1393) -> Result<SLAMResult> {
1394 let mut slam_system = VisualSLAMSystem::new();
1395
1396 if !frames.is_empty() {
1398 slam_system.initialize(&frames[0], camera_calibration)?;
1399 }
1400
1401 slam_system.process_sequence(frames, timestamps, scene_analyses)
1403}
1404
1405#[allow(dead_code)]
1407pub fn process_visual_slam_realtime(
1408 frame: &ArrayView3<f32>,
1409 timestamp: f64,
1410 slam_system: &mut VisualSLAMSystem,
1411 processing_budget: Option<f64>,
1412) -> Result<SLAMResult> {
1413 match processing_budget {
1414 Some(budget) => slam_system.process_realtime(frame, timestamp, budget),
1415 None => slam_system.process_frame(frame, timestamp, None),
1416 }
1417}