Skip to main content

scirs2_vision/
scene_understanding.rs

1//! Advanced Scene Understanding Framework
2//!
3//! This module provides advanced scene understanding capabilities including:
4//! - Semantic scene segmentation and classification
5//! - Object relationship reasoning
6//! - Spatial layout understanding
7//! - Temporal scene analysis
8//! - Multi-modal scene representation
9
10#![allow(dead_code)]
11
12use crate::error::Result;
13use scirs2_core::ndarray::{Array2, Array3, ArrayView3};
14use std::collections::HashMap;
15
16/// Advanced-advanced scene understanding engine with multi-level reasoning
17pub struct SceneUnderstandingEngine {
18    /// Semantic segmentation models
19    segmentation_models: Vec<SemanticSegmentationModel>,
20    /// Object detection and classification
21    object_detector: ObjectDetector,
22    /// Spatial relationship analyzer
23    spatial_analyzer: SpatialRelationshipAnalyzer,
24    /// Temporal scene tracker
25    temporal_tracker: TemporalSceneTracker,
26    /// Scene graph builder
27    scene_graph_builder: SceneGraphBuilder,
28    /// Context-aware reasoning engine
29    reasoning_engine: ContextualReasoningEngine,
30}
31
32/// Semantic segmentation model with advanced-high accuracy
33#[derive(Debug, Clone)]
34pub struct SemanticSegmentationModel {
35    /// Model type identifier
36    model_type: String,
37    /// Class labels
38    class_labels: Vec<String>,
39    /// Model confidence threshold
40    confidence_threshold: f32,
41    /// Multi-scale analysis parameters
42    scale_factors: Vec<f32>,
43}
44
45/// Advanced object detector with relationship understanding
46#[derive(Debug, Clone)]
47pub struct ObjectDetector {
48    /// Detection confidence threshold
49    confidence_threshold: f32,
50    /// Non-maximum suppression threshold
51    nms_threshold: f32,
52    /// Supported object classes
53    object_classes: Vec<String>,
54    /// Feature extraction layers
55    feature_layers: Vec<String>,
56}
57
58/// Spatial relationship analyzer for scene understanding
59#[derive(Debug, Clone)]
60pub struct SpatialRelationshipAnalyzer {
61    /// Relationship types
62    relationship_types: Vec<SpatialRelationType>,
63    /// Distance thresholds for relationships
64    distance_thresholds: HashMap<String, f32>,
65    /// Directional analysis parameters
66    directional_params: DirectionalParams,
67}
68
69/// Temporal scene tracking for video understanding
70#[derive(Debug, Clone)]
71pub struct TemporalSceneTracker {
72    /// Frame buffer size
73    buffer_size: usize,
74    /// Motion detection threshold
75    motion_threshold: f32,
76    /// Object tracking parameters
77    tracking_params: TrackingParams,
78    /// Scene change detection
79    change_detection: ChangeDetectionParams,
80}
81
82/// Scene graph construction for relationship modeling
83#[derive(Debug, Clone)]
84pub struct SceneGraphBuilder {
85    /// Maximum number of nodes
86    max_nodes: usize,
87    /// Edge confidence threshold
88    edge_threshold: f32,
89    /// Graph simplification parameters
90    simplification_params: GraphSimplificationParams,
91}
92
93/// Contextual reasoning engine for high-level understanding
94#[derive(Debug, Clone)]
95pub struct ContextualReasoningEngine {
96    /// Reasoning rules
97    rules: Vec<ReasoningRule>,
98    /// Context windows
99    context_windows: Vec<ContextWindow>,
100    /// Inference parameters
101    inference_params: InferenceParams,
102}
103
104/// Detected object with rich metadata
105#[derive(Debug, Clone)]
106pub struct DetectedObject {
107    /// Object class
108    pub class: String,
109    /// Bounding box (x, y, width, height)
110    pub bbox: (f32, f32, f32, f32),
111    /// Detection confidence
112    pub confidence: f32,
113    /// Object features
114    pub features: Array2<f32>,
115    /// Object mask (if available)
116    pub mask: Option<Array2<bool>>,
117    /// Object attributes
118    pub attributes: HashMap<String, f32>,
119}
120
121/// Spatial relationship between objects
122#[derive(Debug, Clone)]
123pub struct SpatialRelation {
124    /// Source object ID
125    pub source_id: usize,
126    /// Target object ID
127    pub target_id: usize,
128    /// Relationship type
129    pub relation_type: SpatialRelationType,
130    /// Relationship confidence
131    pub confidence: f32,
132    /// Spatial parameters
133    pub parameters: HashMap<String, f32>,
134}
135
136/// Scene understanding result with comprehensive analysis
137#[derive(Debug, Clone)]
138pub struct SceneAnalysisResult {
139    /// Detected objects
140    pub objects: Vec<DetectedObject>,
141    /// Spatial relationships
142    pub relationships: Vec<SpatialRelation>,
143    /// Scene classification
144    pub scene_class: String,
145    /// Scene confidence
146    pub scene_confidence: f32,
147    /// Semantic segmentation map
148    pub segmentation_map: Array2<u32>,
149    /// Scene graph representation
150    pub scene_graph: SceneGraph,
151    /// Temporal information (if applicable)
152    pub temporal_info: Option<TemporalInfo>,
153    /// Reasoning results
154    pub reasoning_results: Vec<ReasoningResult>,
155}
156
157/// Supporting types for scene understanding
158#[derive(Debug, Clone)]
159pub enum SpatialRelationType {
160    /// Object A is on top of object B
161    OnTop,
162    /// Object A is inside object B
163    Inside,
164    /// Object A is next to object B
165    NextTo,
166    /// Object A is in front of object B
167    InFrontOf,
168    /// Object A is behind object B
169    Behind,
170    /// Object A is above object B
171    Above,
172    /// Object A is below object B
173    Below,
174    /// Object A is to the left of object B
175    LeftOf,
176    /// Object A is to the right of object B
177    RightOf,
178    /// Object A contains object B
179    Contains,
180    /// Object A supports object B
181    Supports,
182    /// Object A is connected to object B
183    ConnectedTo,
184    /// Custom relationship
185    Custom(String),
186}
187
188/// Parameters for directional spatial relationship analysis
189#[derive(Debug, Clone)]
190pub struct DirectionalParams {
191    /// Angular tolerance for directional relationships (in radians)
192    pub angular_tolerance: f32,
193    /// Whether to normalize distances for scale invariance
194    pub distance_normalization: bool,
195    /// Whether to apply perspective correction
196    pub perspective_correction: bool,
197}
198
199/// Parameters for temporal object tracking
200#[derive(Debug, Clone)]
201pub struct TrackingParams {
202    /// Maximum frames an object can disappear before being lost
203    pub max_disappearance_frames: usize,
204    /// Tracking algorithm identifier
205    pub tracking_algorithm: String,
206    /// Threshold for feature matching in tracking
207    pub feature_matching_threshold: f32,
208}
209
210/// Parameters for scene change detection
211#[derive(Debug, Clone)]
212pub struct ChangeDetectionParams {
213    /// Sensitivity level for change detection (0.0-1.0)
214    pub sensitivity: f32,
215    /// Size of temporal window for change analysis
216    pub temporal_window: usize,
217    /// Background model type identifier
218    pub background_model: String,
219}
220
221/// Parameters for scene graph simplification
222#[derive(Debug, Clone)]
223pub struct GraphSimplificationParams {
224    /// Minimum edge weight to retain in graph
225    pub min_edge_weight: f32,
226    /// Whether to remove redundant edges
227    pub redundancy_removal: bool,
228    /// Whether to apply hierarchical clustering
229    pub hierarchical_clustering: bool,
230}
231
232/// Rule for contextual reasoning about scenes
233#[derive(Debug, Clone)]
234pub struct ReasoningRule {
235    /// Name identifier for the reasoning rule
236    pub name: String,
237    /// Conditions that must be met for rule to apply
238    pub conditions: Vec<String>,
239    /// Conclusions drawn when conditions are met
240    pub conclusions: Vec<String>,
241    /// Confidence level of the rule (0.0-1.0)
242    pub confidence: f32,
243}
244
245/// Context window for reasoning about scene elements
246#[derive(Debug, Clone)]
247pub struct ContextWindow {
248    /// Number of frames to consider for temporal context
249    pub temporal_span: usize,
250    /// Spatial extent (width, height) for context
251    pub spatial_extent: (f32, f32),
252    /// Threshold for relevance filtering
253    pub relevance_threshold: f32,
254}
255
256/// Parameters for reasoning inference process
257#[derive(Debug, Clone)]
258pub struct InferenceParams {
259    /// Maximum iterations for inference convergence
260    pub max_iterations: usize,
261    /// Threshold for determining convergence
262    pub convergence_threshold: f32,
263    /// Method for handling uncertainty in inference
264    pub uncertainty_handling: String,
265}
266
267/// Graph representation of scene structure and relationships
268#[derive(Debug, Clone)]
269pub struct SceneGraph {
270    /// Nodes representing objects and regions in the scene
271    pub nodes: Vec<SceneGraphNode>,
272    /// Edges representing relationships between objects
273    pub edges: Vec<SceneGraphEdge>,
274    /// Global scene properties and metadata
275    pub global_properties: HashMap<String, f32>,
276}
277
278/// Node in scene graph representing an object or region
279#[derive(Debug, Clone)]
280pub struct SceneGraphNode {
281    /// Unique identifier for the node
282    pub id: usize,
283    /// Type or class of the object
284    pub object_type: String,
285    /// Properties and attributes of the object
286    pub properties: HashMap<String, f32>,
287    /// Spatial location (x, y) in the scene
288    pub spatial_location: (f32, f32),
289}
290
291/// Edge in scene graph representing a relationship
292#[derive(Debug, Clone)]
293pub struct SceneGraphEdge {
294    /// Source node ID
295    pub source: usize,
296    /// Target node ID
297    pub target: usize,
298    /// Type of relationship
299    pub relation_type: String,
300    /// Strength or confidence of the relationship
301    pub weight: f32,
302    /// Additional properties of the relationship
303    pub properties: HashMap<String, f32>,
304}
305
306/// Temporal information for video scene understanding
307#[derive(Debug, Clone)]
308pub struct TemporalInfo {
309    /// Index of the current frame
310    pub frame_index: usize,
311    /// Timestamp of the frame
312    pub timestamp: f64,
313    /// Motion vectors for temporal analysis
314    pub motion_vectors: Array3<f32>,
315    /// Detected changes in the scene
316    pub scene_changes: Vec<SceneChange>,
317}
318
319/// Information about a detected change in the scene
320#[derive(Debug, Clone)]
321pub struct SceneChange {
322    /// Type of change that occurred
323    pub change_type: String,
324    /// Location (x, y) where change occurred
325    pub location: (f32, f32),
326    /// Magnitude of the change
327    pub magnitude: f32,
328    /// Confidence in the change detection
329    pub confidence: f32,
330}
331
332/// Result of contextual reasoning about the scene
333#[derive(Debug, Clone)]
334pub struct ReasoningResult {
335    /// Name of the rule that generated this result
336    pub rule_name: String,
337    /// Conclusion reached by the reasoning process
338    pub conclusion: String,
339    /// Confidence in the reasoning result
340    pub confidence: f32,
341    /// Evidence supporting the conclusion
342    pub evidence: Vec<String>,
343}
344
345impl Default for SceneUnderstandingEngine {
346    fn default() -> Self {
347        Self::new()
348    }
349}
350
351impl SceneUnderstandingEngine {
352    /// Create a new advanced scene understanding engine
353    pub fn new() -> Self {
354        Self {
355            segmentation_models: Vec::new(),
356            object_detector: ObjectDetector::new(),
357            spatial_analyzer: SpatialRelationshipAnalyzer::new(),
358            temporal_tracker: TemporalSceneTracker::new(),
359            scene_graph_builder: SceneGraphBuilder::new(),
360            reasoning_engine: ContextualReasoningEngine::new(),
361        }
362    }
363
364    /// Analyze a single image with comprehensive scene understanding
365    pub fn analyze_scene(&self, image: &ArrayView3<f32>) -> Result<SceneAnalysisResult> {
366        // Multi-scale semantic segmentation
367        let segmentation_map = self.perform_semantic_segmentation(image)?;
368
369        // Object detection and feature extraction
370        let objects = self.detect_objects(image)?;
371
372        // Spatial relationship analysis
373        let relationships = self.analyze_spatial_relationships(&objects)?;
374
375        // Scene classification
376        let (scene_class, scene_confidence) = self.classify_scene(image, &objects)?;
377
378        // Scene graph construction
379        let scene_graph = self.build_scene_graph(&objects, &relationships)?;
380
381        // Contextual reasoning
382        let reasoning_results = self.perform_reasoning(&objects, &relationships, &scene_class)?;
383
384        Ok(SceneAnalysisResult {
385            objects,
386            relationships,
387            scene_class,
388            scene_confidence,
389            segmentation_map,
390            scene_graph,
391            temporal_info: None,
392            reasoning_results,
393        })
394    }
395
396    /// Analyze video sequence with temporal understanding
397    pub fn analyze_video_sequence(
398        &mut self,
399        frames: &[ArrayView3<f32>],
400    ) -> Result<Vec<SceneAnalysisResult>> {
401        let mut results = Vec::new();
402
403        for (frame_idx, frame) in frames.iter().enumerate() {
404            // Analyze individual frame
405            let mut frame_result = self.analyze_scene(frame)?;
406
407            // Add temporal analysis
408            if frame_idx > 0 {
409                let temporal_info =
410                    self.analyze_temporal_changes(frame, &frames[..frame_idx], frame_idx)?;
411                frame_result.temporal_info = Some(temporal_info);
412            }
413
414            results.push(frame_result);
415        }
416
417        // Post-process for temporal consistency
418        self.enforce_temporal_consistency(&mut results)?;
419
420        Ok(results)
421    }
422
423    /// Perform advanced-accurate semantic segmentation
424    fn perform_semantic_segmentation(&self, image: &ArrayView3<f32>) -> Result<Array2<u32>> {
425        let (height, width, _channels) = image.dim();
426        let mut segmentation_map = Array2::zeros((height, width));
427
428        // Multi-scale segmentation for enhanced accuracy
429        for scale_factor in &[0.5, 1.0, 1.5, 2.0] {
430            let scaled_result = self.segment_at_scale(image, *scale_factor)?;
431            self.merge_segmentation_results(&mut segmentation_map, &scaled_result)?;
432        }
433
434        // Post-processing for spatial consistency
435        self.enforce_spatial_consistency(&mut segmentation_map)?;
436
437        Ok(segmentation_map)
438    }
439
440    /// Detect objects with rich feature extraction
441    fn detect_objects(&self, image: &ArrayView3<f32>) -> Result<Vec<DetectedObject>> {
442        let mut objects = Vec::new();
443
444        // Multi-scale object detection
445        let detection_results = self.object_detector.detect_multi_scale(image)?;
446
447        for detection in detection_results {
448            // Extract rich features for each object
449            let features = self.extract_object_features(image, &detection.bbox)?;
450
451            // Compute object mask
452            let mask = self.compute_object_mask(image, &detection)?;
453
454            // Analyze object attributes
455            let attributes = self.analyze_object_attributes(image, &detection, &features)?;
456
457            objects.push(DetectedObject {
458                class: detection.class,
459                bbox: detection.bbox,
460                confidence: detection.confidence,
461                features,
462                mask: Some(mask),
463                attributes,
464            });
465        }
466
467        Ok(objects)
468    }
469
470    /// Analyze spatial relationships between objects
471    fn analyze_spatial_relationships(
472        &self,
473        objects: &[DetectedObject],
474    ) -> Result<Vec<SpatialRelation>> {
475        let mut relationships = Vec::new();
476
477        for (i, obj1) in objects.iter().enumerate() {
478            for (j, obj2) in objects.iter().enumerate() {
479                if i != j {
480                    let relations = self.spatial_analyzer.analyze_pair(obj1, obj2, i, j)?;
481                    relationships.extend(relations);
482                }
483            }
484        }
485
486        // Filter relationships based on confidence
487        relationships.retain(|r| r.confidence > 0.5);
488
489        Ok(relationships)
490    }
491
492    /// Classify the overall scene
493    fn classify_scene(
494        &self,
495        image: &ArrayView3<f32>,
496        objects: &[DetectedObject],
497    ) -> Result<(String, f32)> {
498        // Extract global scene features
499        let global_features = self.extract_global_features(image)?;
500
501        // Analyze object composition
502        let object_composition = self.analyze_object_composition(objects)?;
503
504        // Combine features for scene classification
505        let scene_features = self.combine_scene_features(&global_features, &object_composition)?;
506
507        // Perform classification
508        let (scene_class, confidence) = self.classify_from_features(&scene_features)?;
509
510        Ok((scene_class, confidence))
511    }
512
513    /// Build comprehensive scene graph
514    fn build_scene_graph(
515        &self,
516        objects: &[DetectedObject],
517        relationships: &[SpatialRelation],
518    ) -> Result<SceneGraph> {
519        let nodes = objects
520            .iter()
521            .enumerate()
522            .map(|(i, obj)| SceneGraphNode {
523                id: i,
524                object_type: obj.class.clone(),
525                properties: obj.attributes.clone(),
526                spatial_location: (obj.bbox.0 + obj.bbox.2 / 2.0, obj.bbox.1 + obj.bbox.3 / 2.0),
527            })
528            .collect();
529
530        let edges = relationships
531            .iter()
532            .map(|rel| SceneGraphEdge {
533                source: rel.source_id,
534                target: rel.target_id,
535                relation_type: format!("{:?}", rel.relation_type),
536                weight: rel.confidence,
537                properties: rel.parameters.clone(),
538            })
539            .collect();
540
541        let global_properties = HashMap::new(); // TODO: Implement global scene properties
542
543        Ok(SceneGraph {
544            nodes,
545            edges,
546            global_properties,
547        })
548    }
549
550    /// Perform contextual reasoning on scene understanding results
551    fn perform_reasoning(
552        &self,
553        objects: &[DetectedObject],
554        relationships: &[SpatialRelation],
555        scene_class: &str,
556    ) -> Result<Vec<ReasoningResult>> {
557        let mut results = Vec::new();
558
559        // Apply reasoning rules
560        for rule in &self.reasoning_engine.rules {
561            if let Some(result) =
562                self.apply_reasoning_rule(rule, objects, relationships, scene_class, scene_class)?
563            {
564                results.push(result);
565            }
566        }
567
568        Ok(results)
569    }
570
571    /// Helper methods (placeholder implementations for compilation)
572    fn segment_at_scale(&self, image: &ArrayView3<f32>, scale: f32) -> Result<Array2<u32>> {
573        Ok(Array2::zeros((100, 100))) // Placeholder
574    }
575
576    fn merge_segmentation_results(&self, base: &mut Array2<u32>, new: &Array2<u32>) -> Result<()> {
577        Ok(()) // Placeholder
578    }
579
580    fn enforce_spatial_consistency(&self, segmentation: &mut Array2<u32>) -> Result<()> {
581        Ok(()) // Placeholder
582    }
583
584    fn extract_object_features(
585        &self,
586        image: &ArrayView3<f32>,
587        _bbox: &(f32, f32, f32, f32),
588    ) -> Result<Array2<f32>> {
589        Ok(Array2::zeros((1, 256))) // Placeholder
590    }
591
592    fn compute_object_mask(
593        &self,
594        image: &ArrayView3<f32>,
595        _detection: &DetectionResult,
596    ) -> Result<Array2<bool>> {
597        Ok(Array2::from_elem((50, 50), false)) // Placeholder
598    }
599
600    fn analyze_object_attributes(
601        &self,
602        image: &ArrayView3<f32>,
603        _detection: &DetectionResult,
604        features: &Array2<f32>,
605    ) -> Result<HashMap<String, f32>> {
606        Ok(HashMap::new()) // Placeholder
607    }
608
609    fn extract_global_features(&self, image: &ArrayView3<f32>) -> Result<Array2<f32>> {
610        Ok(Array2::zeros((1, 512))) // Placeholder
611    }
612
613    fn analyze_object_composition(&self, objects: &[DetectedObject]) -> Result<Array2<f32>> {
614        Ok(Array2::zeros((1, 128))) // Placeholder
615    }
616
617    fn combine_scene_features(
618        &self,
619        global: &Array2<f32>,
620        _composition: &Array2<f32>,
621    ) -> Result<Array2<f32>> {
622        Ok(Array2::zeros((1, 640))) // Placeholder
623    }
624
625    fn classify_from_features(&self, features: &Array2<f32>) -> Result<(String, f32)> {
626        Ok(("indoor_scene".to_string(), 0.85)) // Placeholder
627    }
628
629    fn apply_reasoning_rule(
630        &self,
631        _rule: &ReasoningRule,
632        _objects: &[DetectedObject],
633        _relationships: &[SpatialRelation],
634        _scene: &str,
635        _class: &str,
636    ) -> Result<Option<ReasoningResult>> {
637        Ok(None) // Placeholder
638    }
639
640    fn analyze_temporal_changes(
641        &self,
642        _current_frame: &ArrayView3<f32>,
643        _previous_frames: &[ArrayView3<f32>],
644        _frame_idx: usize,
645    ) -> Result<TemporalInfo> {
646        Ok(TemporalInfo {
647            frame_index: _frame_idx,
648            timestamp: _frame_idx as f64 / 30.0, // Assuming 30 FPS
649            motion_vectors: Array3::zeros((100, 100, 2)),
650            scene_changes: Vec::new(),
651        })
652    }
653
654    fn enforce_temporal_consistency(&mut self, results: &mut [SceneAnalysisResult]) -> Result<()> {
655        Ok(()) // Placeholder
656    }
657}
658
659// Placeholder detection result structure
660#[derive(Debug, Clone)]
661struct DetectionResult {
662    class: String,
663    bbox: (f32, f32, f32, f32),
664    confidence: f32,
665}
666
667// Implementation stubs for associated types
668impl ObjectDetector {
669    fn new() -> Self {
670        Self {
671            confidence_threshold: 0.5,
672            nms_threshold: 0.4,
673            object_classes: vec!["person".to_string(), "car".to_string(), "chair".to_string()],
674            feature_layers: vec!["conv5".to_string(), "fc7".to_string()],
675        }
676    }
677
678    fn detect_multi_scale(&self, image: &ArrayView3<f32>) -> Result<Vec<DetectionResult>> {
679        Ok(Vec::new()) // Placeholder
680    }
681}
682
683impl SpatialRelationshipAnalyzer {
684    fn new() -> Self {
685        Self {
686            relationship_types: vec![SpatialRelationType::OnTop, SpatialRelationType::NextTo],
687            distance_thresholds: HashMap::new(),
688            directional_params: DirectionalParams {
689                angular_tolerance: 15.0,
690                distance_normalization: true,
691                perspective_correction: true,
692            },
693        }
694    }
695
696    fn analyze_pair(
697        &self,
698        obj1: &DetectedObject,
699        _obj2: &DetectedObject,
700        id1: usize,
701        _id2: usize,
702    ) -> Result<Vec<SpatialRelation>> {
703        Ok(Vec::new()) // Placeholder
704    }
705}
706
707impl TemporalSceneTracker {
708    fn new() -> Self {
709        Self {
710            buffer_size: 30,
711            motion_threshold: 0.1,
712            tracking_params: TrackingParams {
713                max_disappearance_frames: 10,
714                tracking_algorithm: "kalman".to_string(),
715                feature_matching_threshold: 0.8,
716            },
717            change_detection: ChangeDetectionParams {
718                sensitivity: 0.5,
719                temporal_window: 5,
720                background_model: "gaussian_mixture".to_string(),
721            },
722        }
723    }
724}
725
726impl SceneGraphBuilder {
727    fn new() -> Self {
728        Self {
729            max_nodes: 100,
730            edge_threshold: 0.3,
731            simplification_params: GraphSimplificationParams {
732                min_edge_weight: 0.1,
733                redundancy_removal: true,
734                hierarchical_clustering: true,
735            },
736        }
737    }
738}
739
740impl ContextualReasoningEngine {
741    fn new() -> Self {
742        Self {
743            rules: Vec::new(),
744            context_windows: Vec::new(),
745            inference_params: InferenceParams {
746                max_iterations: 100,
747                convergence_threshold: 0.01,
748                uncertainty_handling: "bayesian".to_string(),
749            },
750        }
751    }
752}
753
754/// Advanced-advanced scene understanding with cognitive-level reasoning
755#[allow(dead_code)]
756pub fn analyze_scene_with_reasoning(
757    image: &ArrayView3<f32>,
758    context: Option<&SceneAnalysisResult>,
759) -> Result<SceneAnalysisResult> {
760    let engine = SceneUnderstandingEngine::new();
761    let mut result = engine.analyze_scene(image)?;
762
763    // Apply contextual reasoning if previous context is available
764    if let Some(prev_context) = context {
765        result = apply_contextual_enhancement(&result, prev_context)?;
766    }
767
768    Ok(result)
769}
770
771/// Apply contextual enhancement based on previous scene understanding
772#[allow(dead_code)]
773fn apply_contextual_enhancement(
774    current: &SceneAnalysisResult,
775    previous: &SceneAnalysisResult,
776) -> Result<SceneAnalysisResult> {
777    // Placeholder for contextual enhancement logic
778    Ok(current.clone())
779}