1#![allow(dead_code)]
11
12use crate::error::Result;
13use scirs2_core::ndarray::{Array2, Array3, ArrayView3};
14use std::collections::HashMap;
15
16pub struct SceneUnderstandingEngine {
18 segmentation_models: Vec<SemanticSegmentationModel>,
20 object_detector: ObjectDetector,
22 spatial_analyzer: SpatialRelationshipAnalyzer,
24 temporal_tracker: TemporalSceneTracker,
26 scene_graph_builder: SceneGraphBuilder,
28 reasoning_engine: ContextualReasoningEngine,
30}
31
32#[derive(Debug, Clone)]
34pub struct SemanticSegmentationModel {
35 model_type: String,
37 class_labels: Vec<String>,
39 confidence_threshold: f32,
41 scale_factors: Vec<f32>,
43}
44
45#[derive(Debug, Clone)]
47pub struct ObjectDetector {
48 confidence_threshold: f32,
50 nms_threshold: f32,
52 object_classes: Vec<String>,
54 feature_layers: Vec<String>,
56}
57
58#[derive(Debug, Clone)]
60pub struct SpatialRelationshipAnalyzer {
61 relationship_types: Vec<SpatialRelationType>,
63 distance_thresholds: HashMap<String, f32>,
65 directional_params: DirectionalParams,
67}
68
69#[derive(Debug, Clone)]
71pub struct TemporalSceneTracker {
72 buffer_size: usize,
74 motion_threshold: f32,
76 tracking_params: TrackingParams,
78 change_detection: ChangeDetectionParams,
80}
81
82#[derive(Debug, Clone)]
84pub struct SceneGraphBuilder {
85 max_nodes: usize,
87 edge_threshold: f32,
89 simplification_params: GraphSimplificationParams,
91}
92
93#[derive(Debug, Clone)]
95pub struct ContextualReasoningEngine {
96 rules: Vec<ReasoningRule>,
98 context_windows: Vec<ContextWindow>,
100 inference_params: InferenceParams,
102}
103
104#[derive(Debug, Clone)]
106pub struct DetectedObject {
107 pub class: String,
109 pub bbox: (f32, f32, f32, f32),
111 pub confidence: f32,
113 pub features: Array2<f32>,
115 pub mask: Option<Array2<bool>>,
117 pub attributes: HashMap<String, f32>,
119}
120
121#[derive(Debug, Clone)]
123pub struct SpatialRelation {
124 pub source_id: usize,
126 pub target_id: usize,
128 pub relation_type: SpatialRelationType,
130 pub confidence: f32,
132 pub parameters: HashMap<String, f32>,
134}
135
136#[derive(Debug, Clone)]
138pub struct SceneAnalysisResult {
139 pub objects: Vec<DetectedObject>,
141 pub relationships: Vec<SpatialRelation>,
143 pub scene_class: String,
145 pub scene_confidence: f32,
147 pub segmentation_map: Array2<u32>,
149 pub scene_graph: SceneGraph,
151 pub temporal_info: Option<TemporalInfo>,
153 pub reasoning_results: Vec<ReasoningResult>,
155}
156
157#[derive(Debug, Clone)]
159pub enum SpatialRelationType {
160 OnTop,
162 Inside,
164 NextTo,
166 InFrontOf,
168 Behind,
170 Above,
172 Below,
174 LeftOf,
176 RightOf,
178 Contains,
180 Supports,
182 ConnectedTo,
184 Custom(String),
186}
187
188#[derive(Debug, Clone)]
190pub struct DirectionalParams {
191 pub angular_tolerance: f32,
193 pub distance_normalization: bool,
195 pub perspective_correction: bool,
197}
198
199#[derive(Debug, Clone)]
201pub struct TrackingParams {
202 pub max_disappearance_frames: usize,
204 pub tracking_algorithm: String,
206 pub feature_matching_threshold: f32,
208}
209
210#[derive(Debug, Clone)]
212pub struct ChangeDetectionParams {
213 pub sensitivity: f32,
215 pub temporal_window: usize,
217 pub background_model: String,
219}
220
221#[derive(Debug, Clone)]
223pub struct GraphSimplificationParams {
224 pub min_edge_weight: f32,
226 pub redundancy_removal: bool,
228 pub hierarchical_clustering: bool,
230}
231
232#[derive(Debug, Clone)]
234pub struct ReasoningRule {
235 pub name: String,
237 pub conditions: Vec<String>,
239 pub conclusions: Vec<String>,
241 pub confidence: f32,
243}
244
245#[derive(Debug, Clone)]
247pub struct ContextWindow {
248 pub temporal_span: usize,
250 pub spatial_extent: (f32, f32),
252 pub relevance_threshold: f32,
254}
255
256#[derive(Debug, Clone)]
258pub struct InferenceParams {
259 pub max_iterations: usize,
261 pub convergence_threshold: f32,
263 pub uncertainty_handling: String,
265}
266
267#[derive(Debug, Clone)]
269pub struct SceneGraph {
270 pub nodes: Vec<SceneGraphNode>,
272 pub edges: Vec<SceneGraphEdge>,
274 pub global_properties: HashMap<String, f32>,
276}
277
278#[derive(Debug, Clone)]
280pub struct SceneGraphNode {
281 pub id: usize,
283 pub object_type: String,
285 pub properties: HashMap<String, f32>,
287 pub spatial_location: (f32, f32),
289}
290
291#[derive(Debug, Clone)]
293pub struct SceneGraphEdge {
294 pub source: usize,
296 pub target: usize,
298 pub relation_type: String,
300 pub weight: f32,
302 pub properties: HashMap<String, f32>,
304}
305
306#[derive(Debug, Clone)]
308pub struct TemporalInfo {
309 pub frame_index: usize,
311 pub timestamp: f64,
313 pub motion_vectors: Array3<f32>,
315 pub scene_changes: Vec<SceneChange>,
317}
318
319#[derive(Debug, Clone)]
321pub struct SceneChange {
322 pub change_type: String,
324 pub location: (f32, f32),
326 pub magnitude: f32,
328 pub confidence: f32,
330}
331
332#[derive(Debug, Clone)]
334pub struct ReasoningResult {
335 pub rule_name: String,
337 pub conclusion: String,
339 pub confidence: f32,
341 pub evidence: Vec<String>,
343}
344
345impl Default for SceneUnderstandingEngine {
346 fn default() -> Self {
347 Self::new()
348 }
349}
350
351impl SceneUnderstandingEngine {
352 pub fn new() -> Self {
354 Self {
355 segmentation_models: Vec::new(),
356 object_detector: ObjectDetector::new(),
357 spatial_analyzer: SpatialRelationshipAnalyzer::new(),
358 temporal_tracker: TemporalSceneTracker::new(),
359 scene_graph_builder: SceneGraphBuilder::new(),
360 reasoning_engine: ContextualReasoningEngine::new(),
361 }
362 }
363
364 pub fn analyze_scene(&self, image: &ArrayView3<f32>) -> Result<SceneAnalysisResult> {
366 let segmentation_map = self.perform_semantic_segmentation(image)?;
368
369 let objects = self.detect_objects(image)?;
371
372 let relationships = self.analyze_spatial_relationships(&objects)?;
374
375 let (scene_class, scene_confidence) = self.classify_scene(image, &objects)?;
377
378 let scene_graph = self.build_scene_graph(&objects, &relationships)?;
380
381 let reasoning_results = self.perform_reasoning(&objects, &relationships, &scene_class)?;
383
384 Ok(SceneAnalysisResult {
385 objects,
386 relationships,
387 scene_class,
388 scene_confidence,
389 segmentation_map,
390 scene_graph,
391 temporal_info: None,
392 reasoning_results,
393 })
394 }
395
396 pub fn analyze_video_sequence(
398 &mut self,
399 frames: &[ArrayView3<f32>],
400 ) -> Result<Vec<SceneAnalysisResult>> {
401 let mut results = Vec::new();
402
403 for (frame_idx, frame) in frames.iter().enumerate() {
404 let mut frame_result = self.analyze_scene(frame)?;
406
407 if frame_idx > 0 {
409 let temporal_info =
410 self.analyze_temporal_changes(frame, &frames[..frame_idx], frame_idx)?;
411 frame_result.temporal_info = Some(temporal_info);
412 }
413
414 results.push(frame_result);
415 }
416
417 self.enforce_temporal_consistency(&mut results)?;
419
420 Ok(results)
421 }
422
423 fn perform_semantic_segmentation(&self, image: &ArrayView3<f32>) -> Result<Array2<u32>> {
425 let (height, width, _channels) = image.dim();
426 let mut segmentation_map = Array2::zeros((height, width));
427
428 for scale_factor in &[0.5, 1.0, 1.5, 2.0] {
430 let scaled_result = self.segment_at_scale(image, *scale_factor)?;
431 self.merge_segmentation_results(&mut segmentation_map, &scaled_result)?;
432 }
433
434 self.enforce_spatial_consistency(&mut segmentation_map)?;
436
437 Ok(segmentation_map)
438 }
439
440 fn detect_objects(&self, image: &ArrayView3<f32>) -> Result<Vec<DetectedObject>> {
442 let mut objects = Vec::new();
443
444 let detection_results = self.object_detector.detect_multi_scale(image)?;
446
447 for detection in detection_results {
448 let features = self.extract_object_features(image, &detection.bbox)?;
450
451 let mask = self.compute_object_mask(image, &detection)?;
453
454 let attributes = self.analyze_object_attributes(image, &detection, &features)?;
456
457 objects.push(DetectedObject {
458 class: detection.class,
459 bbox: detection.bbox,
460 confidence: detection.confidence,
461 features,
462 mask: Some(mask),
463 attributes,
464 });
465 }
466
467 Ok(objects)
468 }
469
470 fn analyze_spatial_relationships(
472 &self,
473 objects: &[DetectedObject],
474 ) -> Result<Vec<SpatialRelation>> {
475 let mut relationships = Vec::new();
476
477 for (i, obj1) in objects.iter().enumerate() {
478 for (j, obj2) in objects.iter().enumerate() {
479 if i != j {
480 let relations = self.spatial_analyzer.analyze_pair(obj1, obj2, i, j)?;
481 relationships.extend(relations);
482 }
483 }
484 }
485
486 relationships.retain(|r| r.confidence > 0.5);
488
489 Ok(relationships)
490 }
491
492 fn classify_scene(
494 &self,
495 image: &ArrayView3<f32>,
496 objects: &[DetectedObject],
497 ) -> Result<(String, f32)> {
498 let global_features = self.extract_global_features(image)?;
500
501 let object_composition = self.analyze_object_composition(objects)?;
503
504 let scene_features = self.combine_scene_features(&global_features, &object_composition)?;
506
507 let (scene_class, confidence) = self.classify_from_features(&scene_features)?;
509
510 Ok((scene_class, confidence))
511 }
512
513 fn build_scene_graph(
515 &self,
516 objects: &[DetectedObject],
517 relationships: &[SpatialRelation],
518 ) -> Result<SceneGraph> {
519 let nodes = objects
520 .iter()
521 .enumerate()
522 .map(|(i, obj)| SceneGraphNode {
523 id: i,
524 object_type: obj.class.clone(),
525 properties: obj.attributes.clone(),
526 spatial_location: (obj.bbox.0 + obj.bbox.2 / 2.0, obj.bbox.1 + obj.bbox.3 / 2.0),
527 })
528 .collect();
529
530 let edges = relationships
531 .iter()
532 .map(|rel| SceneGraphEdge {
533 source: rel.source_id,
534 target: rel.target_id,
535 relation_type: format!("{:?}", rel.relation_type),
536 weight: rel.confidence,
537 properties: rel.parameters.clone(),
538 })
539 .collect();
540
541 let global_properties = HashMap::new(); Ok(SceneGraph {
544 nodes,
545 edges,
546 global_properties,
547 })
548 }
549
550 fn perform_reasoning(
552 &self,
553 objects: &[DetectedObject],
554 relationships: &[SpatialRelation],
555 scene_class: &str,
556 ) -> Result<Vec<ReasoningResult>> {
557 let mut results = Vec::new();
558
559 for rule in &self.reasoning_engine.rules {
561 if let Some(result) =
562 self.apply_reasoning_rule(rule, objects, relationships, scene_class, scene_class)?
563 {
564 results.push(result);
565 }
566 }
567
568 Ok(results)
569 }
570
571 fn segment_at_scale(&self, image: &ArrayView3<f32>, scale: f32) -> Result<Array2<u32>> {
573 Ok(Array2::zeros((100, 100))) }
575
576 fn merge_segmentation_results(&self, base: &mut Array2<u32>, new: &Array2<u32>) -> Result<()> {
577 Ok(()) }
579
580 fn enforce_spatial_consistency(&self, segmentation: &mut Array2<u32>) -> Result<()> {
581 Ok(()) }
583
584 fn extract_object_features(
585 &self,
586 image: &ArrayView3<f32>,
587 _bbox: &(f32, f32, f32, f32),
588 ) -> Result<Array2<f32>> {
589 Ok(Array2::zeros((1, 256))) }
591
592 fn compute_object_mask(
593 &self,
594 image: &ArrayView3<f32>,
595 _detection: &DetectionResult,
596 ) -> Result<Array2<bool>> {
597 Ok(Array2::from_elem((50, 50), false)) }
599
600 fn analyze_object_attributes(
601 &self,
602 image: &ArrayView3<f32>,
603 _detection: &DetectionResult,
604 features: &Array2<f32>,
605 ) -> Result<HashMap<String, f32>> {
606 Ok(HashMap::new()) }
608
609 fn extract_global_features(&self, image: &ArrayView3<f32>) -> Result<Array2<f32>> {
610 Ok(Array2::zeros((1, 512))) }
612
613 fn analyze_object_composition(&self, objects: &[DetectedObject]) -> Result<Array2<f32>> {
614 Ok(Array2::zeros((1, 128))) }
616
617 fn combine_scene_features(
618 &self,
619 global: &Array2<f32>,
620 _composition: &Array2<f32>,
621 ) -> Result<Array2<f32>> {
622 Ok(Array2::zeros((1, 640))) }
624
625 fn classify_from_features(&self, features: &Array2<f32>) -> Result<(String, f32)> {
626 Ok(("indoor_scene".to_string(), 0.85)) }
628
629 fn apply_reasoning_rule(
630 &self,
631 _rule: &ReasoningRule,
632 _objects: &[DetectedObject],
633 _relationships: &[SpatialRelation],
634 _scene: &str,
635 _class: &str,
636 ) -> Result<Option<ReasoningResult>> {
637 Ok(None) }
639
640 fn analyze_temporal_changes(
641 &self,
642 _current_frame: &ArrayView3<f32>,
643 _previous_frames: &[ArrayView3<f32>],
644 _frame_idx: usize,
645 ) -> Result<TemporalInfo> {
646 Ok(TemporalInfo {
647 frame_index: _frame_idx,
648 timestamp: _frame_idx as f64 / 30.0, motion_vectors: Array3::zeros((100, 100, 2)),
650 scene_changes: Vec::new(),
651 })
652 }
653
654 fn enforce_temporal_consistency(&mut self, results: &mut [SceneAnalysisResult]) -> Result<()> {
655 Ok(()) }
657}
658
659#[derive(Debug, Clone)]
661struct DetectionResult {
662 class: String,
663 bbox: (f32, f32, f32, f32),
664 confidence: f32,
665}
666
667impl ObjectDetector {
669 fn new() -> Self {
670 Self {
671 confidence_threshold: 0.5,
672 nms_threshold: 0.4,
673 object_classes: vec!["person".to_string(), "car".to_string(), "chair".to_string()],
674 feature_layers: vec!["conv5".to_string(), "fc7".to_string()],
675 }
676 }
677
678 fn detect_multi_scale(&self, image: &ArrayView3<f32>) -> Result<Vec<DetectionResult>> {
679 Ok(Vec::new()) }
681}
682
683impl SpatialRelationshipAnalyzer {
684 fn new() -> Self {
685 Self {
686 relationship_types: vec![SpatialRelationType::OnTop, SpatialRelationType::NextTo],
687 distance_thresholds: HashMap::new(),
688 directional_params: DirectionalParams {
689 angular_tolerance: 15.0,
690 distance_normalization: true,
691 perspective_correction: true,
692 },
693 }
694 }
695
696 fn analyze_pair(
697 &self,
698 obj1: &DetectedObject,
699 _obj2: &DetectedObject,
700 id1: usize,
701 _id2: usize,
702 ) -> Result<Vec<SpatialRelation>> {
703 Ok(Vec::new()) }
705}
706
707impl TemporalSceneTracker {
708 fn new() -> Self {
709 Self {
710 buffer_size: 30,
711 motion_threshold: 0.1,
712 tracking_params: TrackingParams {
713 max_disappearance_frames: 10,
714 tracking_algorithm: "kalman".to_string(),
715 feature_matching_threshold: 0.8,
716 },
717 change_detection: ChangeDetectionParams {
718 sensitivity: 0.5,
719 temporal_window: 5,
720 background_model: "gaussian_mixture".to_string(),
721 },
722 }
723 }
724}
725
726impl SceneGraphBuilder {
727 fn new() -> Self {
728 Self {
729 max_nodes: 100,
730 edge_threshold: 0.3,
731 simplification_params: GraphSimplificationParams {
732 min_edge_weight: 0.1,
733 redundancy_removal: true,
734 hierarchical_clustering: true,
735 },
736 }
737 }
738}
739
740impl ContextualReasoningEngine {
741 fn new() -> Self {
742 Self {
743 rules: Vec::new(),
744 context_windows: Vec::new(),
745 inference_params: InferenceParams {
746 max_iterations: 100,
747 convergence_threshold: 0.01,
748 uncertainty_handling: "bayesian".to_string(),
749 },
750 }
751 }
752}
753
754#[allow(dead_code)]
756pub fn analyze_scene_with_reasoning(
757 image: &ArrayView3<f32>,
758 context: Option<&SceneAnalysisResult>,
759) -> Result<SceneAnalysisResult> {
760 let engine = SceneUnderstandingEngine::new();
761 let mut result = engine.analyze_scene(image)?;
762
763 if let Some(prev_context) = context {
765 result = apply_contextual_enhancement(&result, prev_context)?;
766 }
767
768 Ok(result)
769}
770
771#[allow(dead_code)]
773fn apply_contextual_enhancement(
774 current: &SceneAnalysisResult,
775 previous: &SceneAnalysisResult,
776) -> Result<SceneAnalysisResult> {
777 Ok(current.clone())
779}