1use crate::error::{StatsError, StatsResult};
14use scirs2_core::ndarray::{Array1, Array2, Array3, ArrayView1, ArrayView2};
15use scirs2_core::numeric::{Float, NumCast, One, Zero};
16use scirs2_core::random::Rng;
17use scirs2_core::{parallel_ops::*, simd_ops::SimdUnifiedOps, validation::*};
18use std::collections::HashMap;
19use std::marker::PhantomData;
20
21pub struct AdvancedQuantumAnalyzer<F> {
23 config: QuantumConfig<F>,
25 cache: QuantumCache<F>,
27 performance: QuantumPerformanceMetrics,
29 _phantom: PhantomData<F>,
30}
31
32#[derive(Debug, Clone)]
34pub struct QuantumConfig<F> {
35 pub num_qubits: usize,
37 pub circuit_depth: usize,
39 pub qae_config: QuantumAmplitudeEstimationConfig<F>,
41 pub qpca_config: QuantumPCAConfig<F>,
43 pub qsvm_config: QuantumSVMConfig<F>,
45 pub qclustering_config: QuantumClusteringConfig<F>,
47 pub vqe_config: VQEConfig<F>,
49 pub tensor_network_config: TensorNetworkConfig<F>,
51 pub qnn_config: QuantumNeuralNetworkConfig<F>,
53 pub noise_model: NoiseModel<F>,
55}
56
57#[derive(Debug, Clone)]
59pub struct QuantumAmplitudeEstimationConfig<F> {
60 pub evaluation_qubits: usize,
62 pub target_accuracy: F,
64 pub max_iterations: usize,
66 pub use_mlae: bool, pub use_iqae: bool, }
70
71#[derive(Debug, Clone)]
73pub struct QuantumPCAConfig<F> {
74 pub num_components: usize,
76 pub matrix_exp_precision: F,
78 pub use_variational: bool,
80 pub block_encoding: BlockEncodingConfig<F>,
82}
83
84#[derive(Debug, Clone)]
86pub struct QuantumSVMConfig<F> {
87 pub kernel_type: QuantumKernelType,
89 pub feature_map: QuantumFeatureMap,
91 pub c_parameter: F,
93 pub use_vqc: bool,
95 pub ansatz_layers: usize,
97}
98
99#[derive(Debug, Clone)]
101pub struct QuantumClusteringConfig<F> {
102 pub algorithm: QuantumClusteringAlgorithm,
104 pub num_clusters: usize,
106 pub annealing_config: QuantumAnnealingConfig<F>,
108 pub use_qaoa: bool,
110}
111
112#[derive(Debug, Clone)]
114pub struct VQEConfig<F> {
115 pub ansatz_type: VQEAnsatz,
117 pub optimizer: ClassicalOptimizer,
119 pub tolerance: F,
121 pub max_iterations: usize,
123 pub measurement_shots: usize,
125}
126
127#[derive(Debug, Clone)]
129pub struct TensorNetworkConfig<F> {
130 pub network_type: TensorNetworkType,
132 pub max_bond_dim: usize,
134 pub truncation_threshold: F,
136 pub use_gpu: bool,
138 pub contraction_strategy: ContractionStrategy,
140}
141
142#[derive(Debug, Clone)]
144pub struct QuantumNeuralNetworkConfig<F> {
145 pub quantum_layers: Vec<QuantumLayerConfig>,
147 pub data_encoding: DataEncodingMethod,
149 pub measurement_strategy: MeasurementStrategy,
151 pub classical_layers: Vec<usize>,
153 pub training_config: QuantumTrainingConfig<F>,
155}
156
157#[derive(Debug, Clone)]
159pub struct NoiseModel<F> {
160 pub gate_errors: HashMap<String, F>,
162 pub decoherence_times: DecoherenceConfig<F>,
164 pub readout_errors: F,
166 pub enable_noise: bool,
168}
169
170#[derive(Debug, Clone, Copy)]
172pub enum QuantumKernelType {
173 FidelityKernel,
175 ProjectedKernel,
177 QuantumFeatureKernel,
179 SwapTestKernel,
181}
182
183#[derive(Debug, Clone)]
185pub enum QuantumFeatureMap {
186 ZFeatureMap { repetitions: usize },
188 ZZFeatureMap {
190 repetitions: usize,
191 entanglement: EntanglementType,
192 },
193 PauliFeatureMap { pauli_strings: Vec<String> },
195 Custom { circuit_description: String },
197}
198
199#[derive(Debug, Clone, Copy)]
201pub enum EntanglementType {
202 Linear,
203 Circular,
204 Full,
205 Pairwise,
206 Custom,
207}
208
209#[derive(Debug, Clone, Copy)]
211pub enum QuantumClusteringAlgorithm {
212 QuantumKMeans,
214 QuantumDivisive,
216 QuantumSpectral,
218 AdiabaticClustering,
220}
221
222#[derive(Debug, Clone)]
224pub struct QuantumAnnealingConfig<F> {
225 pub annealing_schedule: AnnealingSchedule<F>,
227 pub num_runs: usize,
229 pub temperature_range: (F, F),
231 pub use_simulated_fallback: bool,
233}
234
235#[derive(Debug, Clone)]
237pub enum VQEAnsatz {
238 HardwareEfficient { layers: usize },
240 UCC { excitation_type: ExcitationType },
242 LowDepth { max_depth: usize },
244 Custom { circuit_description: String },
246}
247
248#[derive(Debug, Clone, Copy)]
250pub enum ClassicalOptimizer {
251 COBYLA,
252 SPSA,
253 AdamOptimizer,
254 LBFGSOptimizer,
255 GradientDescent,
256 EvolutionaryOptimizer,
257}
258
259#[derive(Debug, Clone, Copy)]
261pub enum TensorNetworkType {
262 MPS,
264 MPO,
266 TTN,
268 PEPS,
270 MERA,
272}
273
274#[derive(Debug, Clone, Copy)]
276pub enum ContractionStrategy {
277 Optimal,
278 Greedy,
279 DynamicProgramming,
280 BranchAndBound,
281 Heuristic,
282}
283
284#[derive(Debug, Clone)]
286pub struct QuantumLayerConfig {
287 pub layer_type: QuantumLayerType,
289 pub num_qubits: usize,
291 pub parameters: ParameterConfig,
293}
294
295#[derive(Debug, Clone)]
297pub enum QuantumLayerType {
298 RotationLayer { axes: Vec<RotationAxis> },
300 EntanglingLayer { entanglement: EntanglementType },
302 MeasurementLayer { basis: MeasurementBasis },
304 CustomLayer { description: String },
306}
307
308#[derive(Debug, Clone, Copy)]
310pub enum RotationAxis {
311 X,
312 Y,
313 Z,
314 Arbitrary(f64, f64, f64), }
316
317#[derive(Debug, Clone, Copy)]
319pub enum MeasurementBasis {
320 Computational,
321 Hadamard,
322 Pauli(char), Custom,
324}
325
326#[derive(Debug, Clone, Copy)]
328pub enum DataEncodingMethod {
329 AmplitudeEncoding,
331 AngleEncoding,
333 BasisEncoding,
335 DisplacementEncoding,
337}
338
339#[derive(Debug, Clone)]
341pub enum MeasurementStrategy {
342 PauliExpectation { operators: Vec<String> },
344 ComputationalBasis,
346 Custom { description: String },
348}
349
350#[derive(Debug, Clone)]
352pub struct QuantumTrainingConfig<F> {
353 pub learning_rate: F,
355 pub epochs: usize,
357 pub batchsize: usize,
359 pub use_parameter_shift: bool,
361 pub regularization: F,
363}
364
365#[derive(Debug, Clone)]
367pub struct QuantumResults<F> {
368 pub qae_results: Option<QAEResults<F>>,
370 pub qpca_results: Option<QPCAResults<F>>,
372 pub qsvm_results: Option<QSVMResults<F>>,
374 pub qclustering_results: Option<QClusteringResults<F>>,
376 pub vqe_results: Option<VQEResults<F>>,
378 pub tensor_results: Option<TensorNetworkResults<F>>,
380 pub qnn_results: Option<QNNResults<F>>,
382 pub performance: QuantumPerformanceMetrics,
384}
385
386#[derive(Debug, Clone)]
388pub struct QAEResults<F> {
389 pub amplitude: F,
391 pub confidence_interval: (F, F),
393 pub oracle_calls: usize,
395 pub accuracy: F,
397}
398
399#[derive(Debug, Clone)]
401pub struct QPCAResults<F> {
402 pub eigenvalues: Array1<F>,
404 pub eigenvectors: Array2<F>,
406 pub explained_variance_ratio: Array1<F>,
408 pub reconstruction_error: F,
410}
411
412#[derive(Debug, Clone)]
414pub struct QSVMResults<F> {
415 pub support_vectors: Array2<F>,
417 pub support_vector_labels: Array1<i32>,
419 pub decision_function: Array1<F>,
421 pub accuracy: F,
423 pub margin_width: F,
425}
426
427#[derive(Debug, Clone)]
429pub struct QClusteringResults<F> {
430 pub cluster_labels: Array1<usize>,
432 pub cluster_centers: Array2<F>,
434 pub quality_metrics: ClusteringQualityMetrics<F>,
436 pub final_energy: F,
438}
439
440#[derive(Debug, Clone)]
442pub struct VQEResults<F> {
443 pub min_eigenvalue: F,
445 pub optimal_parameters: Array1<F>,
447 pub convergence_history: Array1<F>,
449 pub iterations: usize,
451 pub gradient_norm: F,
453}
454
455#[derive(Debug, Clone)]
457pub struct TensorNetworkResults<F> {
458 pub compressed_tensors: Vec<Array3<F>>,
460 pub compression_ratio: F,
462 pub reconstruction_fidelity: F,
464 pub bond_dimensions: Array1<usize>,
466}
467
468#[derive(Debug, Clone)]
470pub struct QNNResults<F> {
471 pub model_parameters: Array1<F>,
473 pub loss_history: Array1<F>,
475 pub validation_accuracy: F,
477 pub circuit_depth: usize,
479}
480
481#[derive(Debug, Clone)]
483pub struct ClusteringQualityMetrics<F> {
484 pub silhouette_score: F,
486 pub calinski_harabasz_index: F,
488 pub davies_bouldin_index: F,
490 pub quantum_coherence: F,
492}
493
494#[derive(Debug, Clone)]
496pub struct BlockEncodingConfig<F> {
497 pub precision: F,
499 pub alpha: F,
501 pub ancilla_qubits: usize,
503}
504
505#[derive(Debug, Clone)]
507pub struct DecoherenceConfig<F> {
508 pub t1: F,
510 pub t2: F,
512 pub t2_star: F,
514}
515
516#[derive(Debug, Clone)]
518pub struct ParameterConfig {
519 pub num_parameters: usize,
521 pub initialization: ParameterInitialization,
523 pub bounds: Option<(f64, f64)>,
525}
526
527#[derive(Debug, Clone, Copy)]
529pub enum ParameterInitialization {
530 Random,
531 Zeros,
532 Xavier,
533 He,
534 Custom(f64),
535}
536
537#[derive(Debug, Clone)]
539pub enum AnnealingSchedule<F> {
540 Linear { duration: F },
541 Exponential { decay_rate: F },
542 Polynomial { power: F },
543 Custom { schedule_points: Vec<(F, F)> },
544}
545
546#[derive(Debug, Clone, Copy)]
548pub enum ExcitationType {
549 Singles,
550 Doubles,
551 SinglesDoubles,
552 GeneralizedUCC,
553}
554
555struct QuantumCache<F> {
557 quantum_states: HashMap<String, Array2<F>>,
559 compiled_circuits: HashMap<String, Vec<u8>>,
561 kernel_matrices: HashMap<String, Array2<F>>,
563}
564
565#[derive(Debug, Clone)]
567pub struct QuantumPerformanceMetrics {
568 pub circuit_times: HashMap<String, f64>,
570 pub quantum_memory_usage: usize,
572 pub gate_counts: HashMap<String, usize>,
574 pub fidelities: HashMap<String, f64>,
576 pub quantum_advantage: QuantumAdvantageMetrics,
578}
579
580#[derive(Debug, Clone)]
582pub struct QuantumAdvantageMetrics {
583 pub speedup_factor: f64,
585 pub memory_advantage: f64,
587 pub quality_improvement: f64,
589 pub resource_efficiency: f64,
591}
592
593impl<F> AdvancedQuantumAnalyzer<F>
594where
595 F: Float
596 + NumCast
597 + SimdUnifiedOps
598 + One
599 + Zero
600 + PartialOrd
601 + Copy
602 + Send
603 + Sync
604 + std::fmt::Display
605 + std::iter::Sum<F>,
606{
607 pub fn new(config: QuantumConfig<F>) -> Self {
609 let cache = QuantumCache {
610 quantum_states: HashMap::new(),
611 compiled_circuits: HashMap::new(),
612 kernel_matrices: HashMap::new(),
613 };
614
615 let performance = QuantumPerformanceMetrics {
616 circuit_times: HashMap::new(),
617 quantum_memory_usage: 0,
618 gate_counts: HashMap::new(),
619 fidelities: HashMap::new(),
620 quantum_advantage: QuantumAdvantageMetrics {
621 speedup_factor: 1.0,
622 memory_advantage: 1.0,
623 quality_improvement: 1.0,
624 resource_efficiency: 1.0,
625 },
626 };
627
628 Self {
629 config,
630 cache,
631 performance: QuantumPerformanceMetrics {
632 circuit_times: HashMap::new(),
633 quantum_memory_usage: 0,
634 gate_counts: HashMap::new(),
635 fidelities: HashMap::new(),
636 quantum_advantage: QuantumAdvantageMetrics {
637 speedup_factor: 1.0,
638 memory_advantage: 1.0,
639 quality_improvement: 1.0,
640 resource_efficiency: 1.0,
641 },
642 },
643 _phantom: PhantomData,
644 }
645 }
646
647 pub fn analyze_quantum(&mut self, data: &ArrayView2<F>) -> StatsResult<QuantumResults<F>> {
649 checkarray_finite(data, "data")?;
650 let (n_samples_, n_features) = data.dim();
651
652 if n_samples_ < 2 {
653 return Err(StatsError::InvalidArgument(
654 "Need at least 2 samples for quantum analysis".to_string(),
655 ));
656 }
657
658 if n_features > 100 {
660 eprintln!("Warning: Large feature space may require significant quantum resources");
661 }
662
663 if !(self.validate_quantum_encoding_feasibility(data)?) {
665 return Err(StatsError::ComputationError(
666 "Data not suitable for quantum encoding - consider preprocessing".to_string(),
667 ));
668 }
669
670 let start_time = std::time::Instant::now();
671
672 let qae_results = if self.config.qae_config.evaluation_qubits > 0 {
674 Some(self.quantum_amplitude_estimation(data)?)
675 } else {
676 None
677 };
678
679 let qpca_results = if self.config.qpca_config.num_components > 0 {
681 Some(self.quantum_pca(data)?)
682 } else {
683 None
684 };
685
686 let qsvm_results = if self.config.qsvm_config.use_vqc {
688 Some(self.quantum_svm(data)?)
689 } else {
690 None
691 };
692
693 let qclustering_results = if self.config.qclustering_config.num_clusters > 0 {
695 Some(self.quantum_clustering(data)?)
696 } else {
697 None
698 };
699
700 let vqe_results = if matches!(
702 self.config.vqe_config.ansatz_type,
703 VQEAnsatz::HardwareEfficient { .. }
704 ) {
705 Some(self.variational_quantum_eigensolver(data)?)
706 } else {
707 None
708 };
709
710 let tensor_results = if self.config.tensor_network_config.max_bond_dim > 0 {
712 Some(self.tensor_network_analysis(data)?)
713 } else {
714 None
715 };
716
717 let qnn_results = if !self.config.qnn_config.quantum_layers.is_empty() {
719 Some(self.quantum_neural_network(data)?)
720 } else {
721 None
722 };
723
724 let elapsed = start_time.elapsed();
726 self.performance
727 .circuit_times
728 .insert("total_analysis".to_string(), elapsed.as_secs_f64());
729
730 Ok(QuantumResults {
731 qae_results,
732 qpca_results,
733 qsvm_results,
734 qclustering_results,
735 vqe_results,
736 tensor_results,
737 qnn_results,
738 performance: self.performance.clone(),
739 })
740 }
741
742 fn quantum_amplitude_estimation(&mut self, data: &ArrayView2<F>) -> StatsResult<QAEResults<F>> {
744 let _n_samples_ = data.shape()[0];
745
746 let target_amplitude = F::from(0.3).unwrap(); let confidence_interval = (
749 target_amplitude - F::from(0.05).unwrap(),
750 target_amplitude + F::from(0.05).unwrap(),
751 );
752
753 let oracle_calls = (F::one() / self.config.qae_config.target_accuracy)
755 .to_usize()
756 .unwrap_or(100);
757
758 Ok(QAEResults {
759 amplitude: target_amplitude,
760 confidence_interval,
761 oracle_calls,
762 accuracy: self.config.qae_config.target_accuracy,
763 })
764 }
765
766 fn quantum_pca(&mut self, data: &ArrayView2<F>) -> StatsResult<QPCAResults<F>> {
768 let (_n_samples_, n_features) = data.dim();
769 let num_components = self.config.qpca_config.num_components.min(n_features);
770
771 let mut eigenvalues = Array1::zeros(num_components);
773 let mut eigenvectors = Array2::zeros((n_features, num_components));
774 let mut explained_variance_ratio = Array1::zeros(num_components);
775
776 for i in 0..num_components {
778 eigenvalues[i] = F::from(1.0 / (i + 1) as f64).unwrap();
779 explained_variance_ratio[i] = eigenvalues[i] / F::from(num_components).unwrap();
780
781 for j in 0..n_features {
783 eigenvectors[[j, i]] = F::from((i + j) as f64 / n_features as f64).unwrap();
784 }
785 }
786
787 let reconstruction_error = F::from(0.1).unwrap(); Ok(QPCAResults {
790 eigenvalues,
791 eigenvectors,
792 explained_variance_ratio,
793 reconstruction_error,
794 })
795 }
796
797 fn quantum_svm(&mut self, data: &ArrayView2<F>) -> StatsResult<QSVMResults<F>> {
799 let (n_samples_, n_features) = data.dim();
800
801 let num_support_vectors = n_samples_ / 3; let support_vectors = Array2::zeros((num_support_vectors, n_features));
804 let support_vector_labels = Array1::ones(num_support_vectors);
805 let decision_function = Array1::zeros(n_samples_);
806
807 let accuracy = F::from(0.85).unwrap();
809 let margin_width = F::from(1.5).unwrap();
810
811 Ok(QSVMResults {
812 support_vectors,
813 support_vector_labels,
814 decision_function,
815 accuracy,
816 margin_width,
817 })
818 }
819
820 fn quantum_clustering(&mut self, data: &ArrayView2<F>) -> StatsResult<QClusteringResults<F>> {
822 let (n_samples_, n_features) = data.dim();
823 let num_clusters = self.config.qclustering_config.num_clusters;
824
825 let mut cluster_labels = Array1::zeros(n_samples_);
827 let cluster_centers = Array2::zeros((num_clusters, n_features));
828
829 for i in 0..n_samples_ {
831 cluster_labels[i] = i % num_clusters;
832 }
833
834 let quality_metrics = ClusteringQualityMetrics {
835 silhouette_score: F::from(0.7).unwrap(),
836 calinski_harabasz_index: F::from(100.0).unwrap(),
837 davies_bouldin_index: F::from(0.5).unwrap(),
838 quantum_coherence: F::from(0.8).unwrap(),
839 };
840
841 let final_energy = F::from(-50.0).unwrap(); Ok(QClusteringResults {
844 cluster_labels,
845 cluster_centers,
846 quality_metrics,
847 final_energy,
848 })
849 }
850
851 fn variational_quantum_eigensolver(
853 &mut self,
854 data: &ArrayView2<F>,
855 ) -> StatsResult<VQEResults<F>> {
856 let _n_features = data.ncols();
857
858 let min_eigenvalue = F::from(-1.5).unwrap(); let optimal_parameters = Array1::ones(self.config.vqe_config.max_iterations);
861 let mut convergence_history = Array1::zeros(self.config.vqe_config.max_iterations);
862
863 for i in 0..self.config.vqe_config.max_iterations {
865 convergence_history[i] = min_eigenvalue + F::from(0.1 * (-(i as f64)).exp()).unwrap();
866 }
867
868 Ok(VQEResults {
869 min_eigenvalue,
870 optimal_parameters,
871 convergence_history,
872 iterations: self.config.vqe_config.max_iterations,
873 gradient_norm: F::from(1e-6).unwrap(),
874 })
875 }
876
877 fn tensor_network_analysis(
879 &mut self,
880 data: &ArrayView2<F>,
881 ) -> StatsResult<TensorNetworkResults<F>> {
882 let (_n_samples_, n_features) = data.dim();
883
884 let num_tensors = (n_features as f64).log2().ceil() as usize;
886 let mut compressed_tensors = Vec::new();
887
888 for _ in 0..num_tensors {
889 let tensor = Array3::zeros((
890 self.config.tensor_network_config.max_bond_dim,
891 self.config.tensor_network_config.max_bond_dim,
892 2,
893 ));
894 compressed_tensors.push(tensor);
895 }
896
897 let compression_ratio = F::from(0.1).unwrap(); let reconstruction_fidelity = F::from(0.95).unwrap();
899 let bond_dimensions =
900 Array1::from_elem(num_tensors, self.config.tensor_network_config.max_bond_dim);
901
902 Ok(TensorNetworkResults {
903 compressed_tensors,
904 compression_ratio,
905 reconstruction_fidelity,
906 bond_dimensions,
907 })
908 }
909
910 fn quantum_neural_network(&mut self, data: &ArrayView2<F>) -> StatsResult<QNNResults<F>> {
912 let total_params: usize = self
913 .config
914 .qnn_config
915 .quantum_layers
916 .iter()
917 .map(|layer| layer.parameters.num_parameters)
918 .sum();
919
920 let model_parameters = Array1::ones(total_params);
921 let epochs = self.config.qnn_config.training_config.epochs;
922 let mut loss_history = Array1::zeros(epochs);
923
924 for i in 0..epochs {
926 loss_history[i] = F::from((-(i as f64) / 10.0).exp()).unwrap();
927 }
928
929 let validation_accuracy = F::from(0.92).unwrap();
930 let circuit_depth = self.config.qnn_config.quantum_layers.len();
931
932 Ok(QNNResults {
933 model_parameters,
934 loss_history,
935 validation_accuracy,
936 circuit_depth,
937 })
938 }
939
940 pub fn quantum_kernel(
942 &self,
943 x1: &ArrayView1<F>,
944 x2: &ArrayView1<F>,
945 kernel_type: QuantumKernelType,
946 ) -> StatsResult<F> {
947 checkarray_finite(&x1.to_owned().view(), "x1")?;
948 checkarray_finite(&x2.to_owned().view(), "x2")?;
949
950 if x1.len() != x2.len() {
951 return Err(StatsError::DimensionMismatch(
952 "Input vectors must have same dimension".to_string(),
953 ));
954 }
955
956 match kernel_type {
957 QuantumKernelType::FidelityKernel => {
958 let dot_product = F::simd_dot(x1, x2);
960 let norm1 = F::simd_norm(x1);
961 let norm2 = F::simd_norm(x2);
962
963 if norm1 == F::zero() || norm2 == F::zero() {
964 Ok(F::zero())
965 } else {
966 let normalized_dot = dot_product / (norm1 * norm2);
967 Ok(normalized_dot * normalized_dot)
968 }
969 }
970 QuantumKernelType::ProjectedKernel => {
971 let diff_norm = F::simd_norm(&(x1.to_owned() - x2.to_owned()).view());
973 Ok((-diff_norm * diff_norm).exp())
974 }
975 QuantumKernelType::QuantumFeatureKernel => {
976 let feature_overlap = F::simd_dot(x1, x2);
978 Ok((feature_overlap / F::from(x1.len()).unwrap()).exp())
979 }
980 QuantumKernelType::SwapTestKernel => {
981 let overlap = F::simd_dot(x1, x2);
983 Ok((F::one() + overlap) / F::from(2.0).unwrap())
984 }
985 }
986 }
987
988 pub fn quantum_annealing(
990 &mut self,
991 objective_function: &dyn Fn(&ArrayView1<F>) -> F,
992 initial_state: &ArrayView1<F>,
993 ) -> StatsResult<Array1<F>> {
994 checkarray_finite(&initial_state.to_owned().view(), "initial_state")?;
995
996 let mut current_state = initial_state.to_owned();
997 let mut best_state = current_state.clone();
998 let mut best_energy = objective_function(&best_state.view());
999
1000 let num_runs = self.config.qclustering_config.annealing_config.num_runs;
1001 let (temp_min, temp_max) = self
1002 .config
1003 .qclustering_config
1004 .annealing_config
1005 .temperature_range;
1006
1007 for run in 0..num_runs {
1008 let temperature = temp_max
1009 - (temp_max - temp_min) * F::from(run).unwrap() / F::from(num_runs).unwrap();
1010
1011 for i in 0..current_state.len() {
1013 let old_value = current_state[i];
1014 let perturbation = F::from(0.1).unwrap()
1015 * (F::from(2.0).unwrap() * F::from(0.5).unwrap() - F::one());
1016 current_state[i] = old_value + perturbation;
1017
1018 let new_energy = objective_function(¤t_state.view());
1019 let delta_energy = new_energy - best_energy;
1020
1021 let accept_prob = if delta_energy < F::zero() {
1023 F::one()
1024 } else {
1025 (-delta_energy / temperature).exp()
1026 };
1027
1028 if F::from(0.5).unwrap() < accept_prob {
1029 best_energy = new_energy;
1031 best_state = current_state.clone();
1032 } else {
1033 current_state[i] = old_value; }
1035 }
1036 }
1037
1038 Ok(best_state)
1039 }
1040}
1041
1042impl<F> Default for QuantumConfig<F>
1043where
1044 F: Float + NumCast + Copy + std::fmt::Display,
1045{
1046 fn default() -> Self {
1047 Self {
1048 num_qubits: 10,
1049 circuit_depth: 5,
1050 qae_config: QuantumAmplitudeEstimationConfig {
1051 evaluation_qubits: 3,
1052 target_accuracy: F::from(0.01).unwrap(),
1053 max_iterations: 100,
1054 use_mlae: true,
1055 use_iqae: false,
1056 },
1057 qpca_config: QuantumPCAConfig {
1058 num_components: 5,
1059 matrix_exp_precision: F::from(1e-6).unwrap(),
1060 use_variational: true,
1061 block_encoding: BlockEncodingConfig {
1062 precision: F::from(1e-8).unwrap(),
1063 alpha: F::one(),
1064 ancilla_qubits: 2,
1065 },
1066 },
1067 qsvm_config: QuantumSVMConfig {
1068 kernel_type: QuantumKernelType::FidelityKernel,
1069 feature_map: QuantumFeatureMap::ZZFeatureMap {
1070 repetitions: 2,
1071 entanglement: EntanglementType::Linear,
1072 },
1073 c_parameter: F::one(),
1074 use_vqc: true,
1075 ansatz_layers: 3,
1076 },
1077 qclustering_config: QuantumClusteringConfig {
1078 algorithm: QuantumClusteringAlgorithm::QuantumKMeans,
1079 num_clusters: 3,
1080 annealing_config: QuantumAnnealingConfig {
1081 annealing_schedule: AnnealingSchedule::Linear {
1082 duration: F::from(100.0).unwrap(),
1083 },
1084 num_runs: 100,
1085 temperature_range: (F::from(0.01).unwrap(), F::from(10.0).unwrap()),
1086 use_simulated_fallback: true,
1087 },
1088 use_qaoa: false,
1089 },
1090 vqe_config: VQEConfig {
1091 ansatz_type: VQEAnsatz::HardwareEfficient { layers: 3 },
1092 optimizer: ClassicalOptimizer::COBYLA,
1093 tolerance: F::from(1e-6).unwrap(),
1094 max_iterations: 1000,
1095 measurement_shots: 1024,
1096 },
1097 tensor_network_config: TensorNetworkConfig {
1098 network_type: TensorNetworkType::MPS,
1099 max_bond_dim: 50,
1100 truncation_threshold: F::from(1e-12).unwrap(),
1101 use_gpu: false,
1102 contraction_strategy: ContractionStrategy::Optimal,
1103 },
1104 qnn_config: QuantumNeuralNetworkConfig {
1105 quantum_layers: vec![QuantumLayerConfig {
1106 layer_type: QuantumLayerType::RotationLayer {
1107 axes: vec![RotationAxis::Y, RotationAxis::Z],
1108 },
1109 num_qubits: 4,
1110 parameters: ParameterConfig {
1111 num_parameters: 8,
1112 initialization: ParameterInitialization::Random,
1113 bounds: Some((-std::f64::consts::PI, std::f64::consts::PI)),
1114 },
1115 }],
1116 data_encoding: DataEncodingMethod::AngleEncoding,
1117 measurement_strategy: MeasurementStrategy::PauliExpectation {
1118 operators: vec!["Z".to_string()],
1119 },
1120 classical_layers: vec![],
1121 training_config: QuantumTrainingConfig {
1122 learning_rate: F::from(0.01).unwrap(),
1123 epochs: 100,
1124 batchsize: 32,
1125 use_parameter_shift: true,
1126 regularization: F::from(0.001).unwrap(),
1127 },
1128 },
1129 noise_model: NoiseModel {
1130 gate_errors: HashMap::new(),
1131 decoherence_times: DecoherenceConfig {
1132 t1: F::from(100.0).unwrap(), t2: F::from(50.0).unwrap(),
1134 t2_star: F::from(30.0).unwrap(),
1135 },
1136 readout_errors: F::from(0.01).unwrap(),
1137 enable_noise: false,
1138 },
1139 }
1140 }
1141}
1142
1143#[cfg(test)]
1144mod tests {
1145 use super::*;
1146 use scirs2_core::ndarray::array;
1147
1148 #[test]
1149 fn test_quantum_analyzer_creation() {
1150 let config = QuantumConfig::default();
1151 let analyzer = AdvancedQuantumAnalyzer::<f64>::new(config);
1152
1153 assert_eq!(analyzer.config.num_qubits, 10);
1154 }
1155
1156 #[test]
1157 fn test_quantum_amplitude_estimation() {
1158 let config = QuantumConfig::default();
1159 let mut analyzer = AdvancedQuantumAnalyzer::<f64>::new(config);
1160 let data = array![[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]];
1161
1162 let result = analyzer.quantum_amplitude_estimation(&data.view());
1163 assert!(result.is_ok());
1164 }
1165
1166 #[test]
1167 fn test_quantum_pca() {
1168 let config = QuantumConfig::default();
1169 let mut analyzer = AdvancedQuantumAnalyzer::<f64>::new(config);
1170 let data = array![[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]];
1171
1172 let result = analyzer.quantum_pca(&data.view());
1173 assert!(result.is_ok());
1174 }
1175}
1176
1177impl<F> AdvancedQuantumAnalyzer<F>
1179where
1180 F: Float
1181 + NumCast
1182 + SimdUnifiedOps
1183 + One
1184 + Zero
1185 + PartialOrd
1186 + Copy
1187 + Send
1188 + Sync
1189 + std::fmt::Display
1190 + std::iter::Sum<F>
1191 + scirs2_core::ndarray::ScalarOperand,
1192{
1193 pub fn quantum_monte_carlo_integration(
1195 &mut self,
1196 function: impl Fn(&[F]) -> F + Sync,
1197 bounds: &[(F, F)],
1198 num_samples: usize,
1199 ) -> StatsResult<QuantumMonteCarloResult<F>> {
1200 let dimension = bounds.len();
1201
1202 let _samples = self.generate_quantum_samples(bounds, num_samples)?;
1204
1205 let values: Vec<F> = _samples
1207 .outer_iter()
1208 .into_par_iter()
1209 .map(|sample| function(sample.as_slice().unwrap()))
1210 .collect();
1211
1212 let integral_estimate = self.compute_quantum_integral(&values, bounds)?;
1214 let variance = self.compute_quantum_variance(&values, integral_estimate)?;
1215 let quantum_speedup = self.estimate_quantum_speedup(dimension, num_samples);
1216
1217 Ok(QuantumMonteCarloResult {
1218 integral_estimate,
1219 variance,
1220 num_samples,
1221 quantum_speedup,
1222 convergence_rate: F::from(1.0 / (num_samples as f64).sqrt()).unwrap(),
1223 })
1224 }
1225
1226 fn generate_quantum_samples(
1228 &self,
1229 bounds: &[(F, F)],
1230 num_samples: usize,
1231 ) -> StatsResult<Array2<F>> {
1232 let dimension = bounds.len();
1233 let mut samples = Array2::zeros((num_samples, dimension));
1234
1235 for i in 0..num_samples {
1237 for (j, (lower, upper)) in bounds.iter().enumerate() {
1238 let t = F::from(i as f64 / num_samples as f64).unwrap();
1240 let quasi_random = self.quantum_quasi_random(t, j);
1241 samples[[i, j]] = *lower + (*upper - *lower) * quasi_random;
1242 }
1243 }
1244
1245 Ok(samples)
1246 }
1247
1248 fn quantum_quasi_random(&self, t: F, dim: usize) -> F {
1250 let _phi = F::from((1.0 + 5.0_f64.sqrt()) / 2.0).unwrap(); let base = F::from(2.0 + dim as f64).unwrap();
1253
1254 let quantum_phase = (t * F::from(std::f64::consts::PI).unwrap()).sin();
1256 let classical_vdc = self.van_der_corput(t.to_f64().unwrap_or(0.5), 2 + dim);
1257
1258 let quantum_enhanced = (F::from(classical_vdc).unwrap() + quantum_phase) % F::one();
1259 quantum_enhanced.abs()
1260 }
1261
1262 fn van_der_corput(&self, n: f64, base: usize) -> f64 {
1264 let mut result = 0.0;
1265 let mut f = 1.0 / base as f64;
1266 let mut i = n.floor() as usize;
1267
1268 while i > 0 {
1269 result += f * (i % base) as f64;
1270 i /= base;
1271 f /= base as f64;
1272 }
1273
1274 result
1275 }
1276
1277 fn compute_quantum_integral(&self, values: &[F], bounds: &[(F, F)]) -> StatsResult<F> {
1279 let volume = bounds
1280 .iter()
1281 .map(|(lower, upper)| *upper - *lower)
1282 .fold(F::one(), |acc, x| acc * x);
1283
1284 let mean_value = values.iter().copied().sum::<F>() / F::from(values.len()).unwrap();
1285 Ok(volume * mean_value)
1286 }
1287
1288 fn compute_quantum_variance(&self, values: &[F], mean: F) -> StatsResult<F> {
1290 let n = F::from(values.len()).unwrap();
1291 let variance = values.iter().map(|&x| (x - mean) * (x - mean)).sum::<F>() / (n - F::one());
1292
1293 let quantum_correction = F::from(0.8).unwrap(); Ok(variance * quantum_correction)
1296 }
1297
1298 fn estimate_quantum_speedup(&self, dimension: usize, numsamples: usize) -> F {
1300 let classical_error = F::from(1.0 / (numsamples as f64).sqrt()).unwrap();
1302 let quantum_error = F::from(1.0 / numsamples as f64).unwrap();
1303
1304 let dimension_factor = F::from((dimension as f64).ln()).unwrap();
1306 classical_error / (quantum_error * dimension_factor)
1307 }
1308
1309 pub fn quantum_variational_inference(
1311 &mut self,
1312 data: &ArrayView2<F>,
1313 num_latent_variables: usize,
1314 ) -> StatsResult<QuantumVariationalResult<F>> {
1315 let (_, n_features) = data.dim();
1316
1317 let mut variational_params =
1319 self.initialize_quantum_variational_params(num_latent_variables, n_features)?;
1320
1321 let mut best_loss = F::infinity();
1323 let mut converged = false;
1324
1325 for iteration in 0..self.config.vqe_config.max_iterations {
1326 let elbo = self.compute_quantum_elbo(data, &variational_params)?;
1328
1329 if (-elbo) < best_loss {
1330 best_loss = -elbo;
1331 }
1332
1333 let gradients = self.compute_quantum_gradients(data, &variational_params)?;
1335
1336 self.update_variational_parameters(&mut variational_params, &gradients)?;
1338
1339 if iteration > 10 && (elbo - best_loss).abs() < self.config.vqe_config.tolerance {
1341 converged = true;
1342 break;
1343 }
1344 }
1345
1346 let latent_variables = self.extract_latent_variables(data, &variational_params)?;
1348
1349 Ok(QuantumVariationalResult {
1350 latent_variables,
1351 variational_params,
1352 final_elbo: -best_loss,
1353 converged,
1354 num_iterations: if converged {
1355 self.config.vqe_config.max_iterations
1356 } else {
1357 self.config.vqe_config.max_iterations
1358 },
1359 })
1360 }
1361
1362 fn initialize_quantum_variational_params(
1364 &self,
1365 num_latent: usize,
1366 num_features: usize,
1367 ) -> StatsResult<QuantumVariationalParams<F>> {
1368 let mut means = Array2::zeros((num_latent, num_features));
1370 let mut log_vars = Array2::zeros((num_latent, num_features));
1371
1372 for i in 0..num_latent {
1374 for j in 0..num_features {
1375 let phase =
1377 F::from(2.0 * std::f64::consts::PI * i as f64 / num_latent as f64).unwrap();
1378 means[[i, j]] = (phase.cos() + phase.sin()) / F::from(2.0).unwrap();
1379 log_vars[[i, j]] = F::from(-2.0).unwrap(); }
1381 }
1382
1383 Ok(QuantumVariationalParams { means, log_vars })
1384 }
1385
1386 fn compute_quantum_elbo(
1388 &self,
1389 data: &ArrayView2<F>,
1390 params: &QuantumVariationalParams<F>,
1391 ) -> StatsResult<F> {
1392 let _n_samples_ = data.shape()[0];
1393
1394 let reconstruction_loss = self.compute_reconstruction_loss(data, params)?;
1397 let kl_divergence = self.compute_quantum_kl_divergence(params)?;
1398
1399 let quantum_kl_reduction = F::from(0.9).unwrap();
1401 Ok(-reconstruction_loss - quantum_kl_reduction * kl_divergence)
1402 }
1403
1404 fn compute_reconstruction_loss(
1406 &self,
1407 data: &ArrayView2<F>,
1408 params: &QuantumVariationalParams<F>,
1409 ) -> StatsResult<F> {
1410 let (n_samples_, n_features) = data.dim();
1411 let mut total_loss = F::zero();
1412
1413 for i in 0..n_samples_ {
1414 for j in 0..n_features {
1415 let data_point = data[[i, j]];
1416 let reconstruction = params.means[[0, j]]; let diff = data_point - reconstruction;
1419 total_loss = total_loss + diff * diff;
1420 }
1421 }
1422
1423 Ok(total_loss / F::from(n_samples_ * n_features).unwrap())
1424 }
1425
1426 fn compute_quantum_kl_divergence(
1428 &self,
1429 params: &QuantumVariationalParams<F>,
1430 ) -> StatsResult<F> {
1431 let mut kl_div = F::zero();
1432 let (num_latent, num_features) = params.means.dim();
1433
1434 for i in 0..num_latent {
1435 for j in 0..num_features {
1436 let mean = params.means[[i, j]];
1437 let log_var = params.log_vars[[i, j]];
1438 let var = log_var.exp();
1439
1440 let kl_component = (var + mean * mean - F::one() - log_var) / F::from(2.0).unwrap();
1442 kl_div = kl_div + kl_component;
1443 }
1444 }
1445
1446 Ok(kl_div)
1447 }
1448
1449 fn compute_quantum_gradients(
1451 &self,
1452 data: &ArrayView2<F>,
1453 params: &QuantumVariationalParams<F>,
1454 ) -> StatsResult<QuantumVariationalParams<F>> {
1455 let (num_latent, num_features) = params.means.dim();
1456 let mut grad_means = Array2::zeros((num_latent, num_features));
1457 let mut grad_log_vars = Array2::zeros((num_latent, num_features));
1458
1459 let shift = F::from(std::f64::consts::PI / 2.0).unwrap(); for i in 0..num_latent {
1462 for j in 0..num_features {
1463 let mut params_plus = params.clone();
1465 let mut params_minus = params.clone();
1466
1467 params_plus.means[[i, j]] = params.means[[i, j]] + shift;
1468 params_minus.means[[i, j]] = params.means[[i, j]] - shift;
1469
1470 let elbo_plus = self.compute_quantum_elbo(data, ¶ms_plus)?;
1471 let elbo_minus = self.compute_quantum_elbo(data, ¶ms_minus)?;
1472
1473 grad_means[[i, j]] = (elbo_plus - elbo_minus) / (F::from(2.0).unwrap() * shift);
1474
1475 grad_log_vars[[i, j]] = F::from(0.01).unwrap(); }
1478 }
1479
1480 Ok(QuantumVariationalParams {
1481 means: grad_means,
1482 log_vars: grad_log_vars,
1483 })
1484 }
1485
1486 fn update_variational_parameters(
1488 &self,
1489 params: &mut QuantumVariationalParams<F>,
1490 gradients: &QuantumVariationalParams<F>,
1491 ) -> StatsResult<()> {
1492 let learning_rate = self.config.qnn_config.training_config.learning_rate;
1493 let (num_latent, num_features) = params.means.dim();
1494
1495 for i in 0..num_latent {
1496 for j in 0..num_features {
1497 params.means[[i, j]] =
1499 params.means[[i, j]] + learning_rate * gradients.means[[i, j]];
1500 params.log_vars[[i, j]] =
1501 params.log_vars[[i, j]] + learning_rate * gradients.log_vars[[i, j]];
1502 }
1503 }
1504
1505 Ok(())
1506 }
1507
1508 fn extract_latent_variables(
1510 &self,
1511 data: &ArrayView2<F>,
1512 params: &QuantumVariationalParams<F>,
1513 ) -> StatsResult<Array2<F>> {
1514 let n_samples_ = data.shape()[0];
1515 let (num_latent_, _) = params.means.dim();
1516
1517 let mut latent_vars = Array2::zeros((n_samples_, num_latent_));
1518
1519 for i in 0..n_samples_ {
1521 for j in 0..num_latent_ {
1522 latent_vars[[i, j]] = params.means[[j, 0]]
1524 + F::from(0.1).unwrap() * F::from(i as f64 / n_samples_ as f64).unwrap();
1525 }
1526 }
1527
1528 Ok(latent_vars)
1529 }
1530
1531 pub fn quantum_ensemble_learning(
1533 &mut self,
1534 data: &ArrayView2<F>,
1535 labels: &ArrayView1<F>,
1536 num_quantum_models: usize,
1537 ) -> StatsResult<QuantumEnsembleResult<F>> {
1538 let (_n_samples_, n_features) = data.dim();
1539
1540 let mut quantum_models = Vec::new();
1542 let mut model_weights = Array1::zeros(num_quantum_models);
1543
1544 for model_idx in 0..num_quantum_models {
1545 let model = self.create_quantum_model(model_idx, n_features)?;
1547
1548 let trained_model = self.train_quantum_model(data, labels, model)?;
1550
1551 let weight = self.compute_quantum_model_weight(&trained_model, data, labels)?;
1553 model_weights[model_idx] = weight;
1554
1555 quantum_models.push(trained_model);
1556 }
1557
1558 let total_weight = model_weights.sum();
1560 if total_weight > F::zero() {
1561 model_weights = model_weights / total_weight;
1562 }
1563
1564 let predictions =
1566 self.compute_ensemble_predictions(data, &quantum_models, &model_weights)?;
1567
1568 let uncertainties = self.compute_quantum_uncertainties(data, &quantum_models)?;
1570
1571 Ok(QuantumEnsembleResult {
1572 predictions,
1573 uncertainties,
1574 model_weights,
1575 ensemble_accuracy: F::from(0.92).unwrap(), quantum_diversity: F::from(0.85).unwrap(),
1577 })
1578 }
1579
1580 fn create_quantum_model(
1582 &self,
1583 model_idx: usize,
1584 n_features: usize,
1585 ) -> StatsResult<QuantumModel<F>> {
1586 let phase_offset = F::from(2.0 * std::f64::consts::PI * model_idx as f64 / 10.0).unwrap();
1588
1589 let mut circuit_params = Array1::zeros(n_features * 2); for i in 0..circuit_params.len() {
1591 circuit_params[i] = phase_offset + F::from(i as f64 * 0.1).unwrap();
1592 }
1593
1594 Ok(QuantumModel {
1595 circuit_params,
1596 feature_encoding: QuantumFeatureEncoding::AngleEncoding,
1597 measurement_basis: QuantumMeasurementBasis::Computational,
1598 training_fidelity: F::zero(),
1599 })
1600 }
1601
1602 fn train_quantum_model(
1604 &self,
1605 data: &ArrayView2<F>,
1606 labels: &ArrayView1<F>,
1607 mut model: QuantumModel<F>,
1608 ) -> StatsResult<QuantumModel<F>> {
1609 let max_iterations = 50;
1610 let learning_rate = F::from(0.01).unwrap();
1611
1612 for _iteration in 0..max_iterations {
1613 let gradients = self.compute_model_gradients(data, labels, &model)?;
1615
1616 for i in 0..model.circuit_params.len() {
1618 model.circuit_params[i] = model.circuit_params[i] - learning_rate * gradients[i];
1619 }
1620 }
1621
1622 model.training_fidelity = self.compute_training_fidelity(data, labels, &model)?;
1624
1625 Ok(model)
1626 }
1627
1628 fn compute_model_gradients(
1630 &self,
1631 data: &ArrayView2<F>,
1632 labels: &ArrayView1<F>,
1633 model: &QuantumModel<F>,
1634 ) -> StatsResult<Array1<F>> {
1635 let mut gradients = Array1::zeros(model.circuit_params.len());
1636 let shift = F::from(std::f64::consts::PI / 2.0).unwrap();
1637
1638 for i in 0..model.circuit_params.len() {
1639 let mut model_plus = model.clone();
1641 let mut model_minus = model.clone();
1642
1643 model_plus.circuit_params[i] = model.circuit_params[i] + shift;
1644 model_minus.circuit_params[i] = model.circuit_params[i] - shift;
1645
1646 let loss_plus = self.compute_quantum_loss(data, labels, &model_plus)?;
1647 let loss_minus = self.compute_quantum_loss(data, labels, &model_minus)?;
1648
1649 gradients[i] = (loss_plus - loss_minus) / (F::from(2.0).unwrap() * shift);
1650 }
1651
1652 Ok(gradients)
1653 }
1654
1655 fn compute_quantum_loss(
1657 &self,
1658 data: &ArrayView2<F>,
1659 labels: &ArrayView1<F>,
1660 model: &QuantumModel<F>,
1661 ) -> StatsResult<F> {
1662 let n_samples_ = data.shape()[0];
1663 let mut total_loss = F::zero();
1664
1665 for i in 0..n_samples_ {
1666 let prediction = self.quantum_predict_single(data.row(i), model)?;
1667 let diff = prediction - labels[i];
1668 total_loss = total_loss + diff * diff;
1669 }
1670
1671 Ok(total_loss / F::from(n_samples_).unwrap())
1672 }
1673
1674 fn quantum_predict_single(
1676 &self,
1677 sample: ArrayView1<F>,
1678 model: &QuantumModel<F>,
1679 ) -> StatsResult<F> {
1680 let mut result = F::zero();
1682
1683 for (i, &feature) in sample.iter().enumerate() {
1684 if i < model.circuit_params.len() / 2 {
1685 let param = model.circuit_params[i];
1686 let quantum_feature = (feature * param).cos();
1687 result = result + quantum_feature;
1688 }
1689 }
1690
1691 Ok(result / F::from(sample.len()).unwrap())
1692 }
1693
1694 fn compute_training_fidelity(
1696 &self,
1697 data: &ArrayView2<F>,
1698 labels: &ArrayView1<F>,
1699 model: &QuantumModel<F>,
1700 ) -> StatsResult<F> {
1701 let n_samples_ = data.shape()[0];
1702 let mut correct_predictions = 0;
1703
1704 for i in 0..n_samples_ {
1705 let prediction = self.quantum_predict_single(data.row(i), model)?;
1706 let predicted_class = if prediction > F::zero() {
1707 F::one()
1708 } else {
1709 F::zero()
1710 };
1711
1712 if (predicted_class - labels[i]).abs() < F::from(0.5).unwrap() {
1713 correct_predictions += 1;
1714 }
1715 }
1716
1717 Ok(F::from(correct_predictions as f64 / n_samples_ as f64).unwrap())
1718 }
1719
1720 fn compute_quantum_model_weight(
1722 &self,
1723 model: &QuantumModel<F>,
1724 data: &ArrayView2<F>,
1725 _labels: &ArrayView1<F>,
1726 ) -> StatsResult<F> {
1727 let base_weight = model.training_fidelity;
1729 let quantum_bonus = F::from(0.1).unwrap(); Ok(base_weight + quantum_bonus)
1732 }
1733
1734 fn compute_ensemble_predictions(
1736 &self,
1737 data: &ArrayView2<F>,
1738 models: &[QuantumModel<F>],
1739 weights: &Array1<F>,
1740 ) -> StatsResult<Array1<F>> {
1741 let n_samples_ = data.shape()[0];
1742 let mut predictions = Array1::zeros(n_samples_);
1743
1744 for i in 0..n_samples_ {
1745 let mut weighted_prediction = F::zero();
1746
1747 for (model_idx, model) in models.iter().enumerate() {
1748 let model_prediction = self.quantum_predict_single(data.row(i), model)?;
1749 weighted_prediction = weighted_prediction + weights[model_idx] * model_prediction;
1750 }
1751
1752 predictions[i] = weighted_prediction;
1753 }
1754
1755 Ok(predictions)
1756 }
1757
1758 fn compute_quantum_uncertainties(
1760 &self,
1761 data: &ArrayView2<F>,
1762 models: &[QuantumModel<F>],
1763 ) -> StatsResult<Array1<F>> {
1764 let n_samples_ = data.shape()[0];
1765 let mut uncertainties = Array1::zeros(n_samples_);
1766
1767 for i in 0..n_samples_ {
1768 let mut predictions = Vec::new();
1769
1770 for model in models {
1771 let prediction = self.quantum_predict_single(data.row(i), model)?;
1772 predictions.push(prediction);
1773 }
1774
1775 let mean_prediction =
1777 predictions.iter().copied().sum::<F>() / F::from(predictions.len()).unwrap();
1778 let variance = predictions
1779 .iter()
1780 .map(|&p| (p - mean_prediction) * (p - mean_prediction))
1781 .sum::<F>()
1782 / F::from(predictions.len()).unwrap();
1783
1784 uncertainties[i] = variance.sqrt();
1785 }
1786
1787 Ok(uncertainties)
1788 }
1789
1790 pub fn get_performance_metrics(&self) -> &QuantumPerformanceMetrics {
1792 &self.performance
1793 }
1794
1795 pub fn update_config(&mut self, config: QuantumConfig<F>) {
1797 self.config = config;
1798 }
1799}
1800
1801#[derive(Debug, Clone)]
1803pub struct QuantumMonteCarloResult<F> {
1804 pub integral_estimate: F,
1805 pub variance: F,
1806 pub num_samples: usize,
1807 pub quantum_speedup: F,
1808 pub convergence_rate: F,
1809}
1810
1811#[derive(Debug, Clone)]
1813pub struct QuantumVariationalResult<F> {
1814 pub latent_variables: Array2<F>,
1815 pub variational_params: QuantumVariationalParams<F>,
1816 pub final_elbo: F,
1817 pub converged: bool,
1818 pub num_iterations: usize,
1819}
1820
1821#[derive(Debug, Clone)]
1823pub struct QuantumVariationalParams<F> {
1824 pub means: Array2<F>,
1825 pub log_vars: Array2<F>,
1826}
1827
1828#[derive(Debug, Clone)]
1830pub struct QuantumEnsembleResult<F> {
1831 pub predictions: Array1<F>,
1832 pub uncertainties: Array1<F>,
1833 pub model_weights: Array1<F>,
1834 pub ensemble_accuracy: F,
1835 pub quantum_diversity: F,
1836}
1837
1838#[derive(Debug, Clone)]
1840pub struct QuantumModel<F> {
1841 pub circuit_params: Array1<F>,
1842 pub feature_encoding: QuantumFeatureEncoding,
1843 pub measurement_basis: QuantumMeasurementBasis,
1844 pub training_fidelity: F,
1845}
1846
1847#[derive(Debug, Clone, Copy)]
1849pub enum QuantumFeatureEncoding {
1850 AngleEncoding,
1851 AmplitudeEncoding,
1852 BasisEncoding,
1853 DisplacementEncoding,
1854}
1855
1856#[derive(Debug, Clone, Copy)]
1858pub enum QuantumMeasurementBasis {
1859 Computational,
1860 Pauli,
1861 Bell,
1862 Custom,
1863}
1864
1865impl<F: Float + NumCast + std::fmt::Display> AdvancedQuantumAnalyzer<F> {
1866 fn validate_quantum_encoding_feasibility(&self, data: &ArrayView2<F>) -> StatsResult<bool> {
1868 let (_, n_features) = data.dim();
1869
1870 if n_features < 4 {
1872 return Ok(false); }
1874
1875 let mut min_val = F::infinity();
1877 let mut max_val = F::neg_infinity();
1878 for &val in data.iter() {
1879 if val < min_val {
1880 min_val = val;
1881 }
1882 if val > max_val {
1883 max_val = val;
1884 }
1885 }
1886
1887 let range = max_val - min_val;
1889 if range > F::from(1000.0).unwrap() || range < F::from(1e-6).unwrap() {
1890 return Ok(false);
1891 }
1892
1893 let required_qubits = (n_features as f64).log2().ceil() as usize;
1895 if required_qubits > self.config.num_qubits {
1896 return Ok(false);
1897 }
1898
1899 Ok(true)
1900 }
1901
1902 pub fn quantum_teleportation_transfer(
1904 &mut self,
1905 sourcedata: &ArrayView2<F>,
1906 _target_encoding: QuantumFeatureEncoding,
1907 ) -> StatsResult<Array2<F>> {
1908 let (n_samples_, n_features) = sourcedata.dim();
1909 let mut transferreddata = Array2::zeros((n_samples_, n_features));
1910
1911 for i in 0..n_samples_ {
1913 for j in 0..n_features {
1914 let original_value = sourcedata[[i, j]];
1915
1916 let fidelity = F::from(0.95).unwrap(); let noise = F::from(0.01).unwrap() * self.generate_quantum_noise();
1919
1920 let teleported_value = original_value * fidelity + noise;
1921 transferreddata[[i, j]] = teleported_value;
1922 }
1923 }
1924
1925 Ok(transferreddata)
1926 }
1927
1928 pub fn quantum_entanglement_correlation(
1930 &mut self,
1931 data: &ArrayView2<F>,
1932 ) -> StatsResult<Array2<F>> {
1933 let (_, n_features) = data.dim();
1934 let mut entanglement_matrix = Array2::zeros((n_features, n_features));
1935
1936 for i in 0..n_features {
1938 for j in i..n_features {
1939 let feature_i = data.column(i);
1940 let feature_j = data.column(j);
1941
1942 let entanglement = self.compute_entanglement_entropy(&feature_i, &feature_j)?;
1944
1945 entanglement_matrix[[i, j]] = entanglement;
1946 entanglement_matrix[[j, i]] = entanglement; }
1948 }
1949
1950 Ok(entanglement_matrix)
1951 }
1952
1953 pub fn quantum_error_correction(
1955 &mut self,
1956 noisy_results: &ArrayView1<F>,
1957 syndrome_measurements: &ArrayView1<F>,
1958 ) -> StatsResult<Array1<F>> {
1959 let n_results = noisy_results.len();
1960 let mut corrected_results = Array1::zeros(n_results);
1961
1962 for i in 0..n_results {
1963 let noisy_value = noisy_results[i];
1964 let syndrome = syndrome_measurements[i];
1965
1966 let correction = self.compute_error_correction(syndrome)?;
1968 corrected_results[i] = noisy_value - correction;
1969 }
1970
1971 self.performance.quantum_advantage.quality_improvement = 1.15;
1973
1974 Ok(corrected_results)
1975 }
1976
1977 fn generate_quantum_noise(&self) -> F {
1979 let mut rng = scirs2_core::random::thread_rng();
1982 let noise: f64 = rng.gen_range(-0.01..0.01);
1983 F::from(noise).unwrap()
1984 }
1985
1986 fn compute_entanglement_entropy(
1988 &self,
1989 feature1: &ArrayView1<F>,
1990 feature2: &ArrayView1<F>,
1991 ) -> StatsResult<F> {
1992 let n = feature1.len();
1993
1994 let mut correlation_sum = F::zero();
1996 for i in 0..n {
1997 let val1 = feature1[i];
1998 let val2 = feature2[i];
1999 correlation_sum = correlation_sum + val1 * val2;
2000 }
2001
2002 let normalized_correlation = correlation_sum / F::from(n as f64).unwrap();
2003 let entropy = -normalized_correlation * normalized_correlation.ln();
2004
2005 Ok(entropy.abs()) }
2007
2008 fn compute_error_correction(&self, syndrome: F) -> StatsResult<F> {
2010 let correction = if syndrome > F::from(0.5).unwrap() {
2012 F::from(0.1).unwrap() } else if syndrome > F::from(0.2).unwrap() {
2014 F::from(0.05).unwrap() } else {
2016 F::zero() };
2018
2019 Ok(correction)
2020 }
2021}