scirs2_stats/
lib.rs

1#![allow(deprecated)]
2#![allow(clippy::all)]
3#![allow(unreachable_code)]
4#![allow(unused_mut)]
5#![allow(missing_docs)]
6#![allow(for_loops_over_fallibles)]
7#![allow(dead_code)]
8#![allow(unreachable_patterns)]
9#![allow(unused_assignments)]
10#![allow(unused_variables)]
11#![allow(private_interfaces)]
12#![allow(clippy::approx_constant)]
13
14//! # SciRS2 Statistics - Comprehensive Statistical Computing
15//!
16//! **scirs2-stats** provides production-ready statistical functions modeled after SciPy's `stats` module,
17//! offering descriptive statistics, probability distributions, hypothesis testing, regression analysis,
18//! and advanced methods including Bayesian statistics, MCMC, survival analysis, and more.
19//!
20//! ## 🎯 Key Features
21//!
22//! - **SciPy Compatibility**: Drop-in replacement for `scipy.stats` with familiar APIs
23//! - **100+ Distributions**: Continuous, discrete, and multivariate distributions
24//! - **Hypothesis Testing**: Parametric and non-parametric tests with exact p-values
25//! - **Regression Models**: Linear, ridge, lasso, elastic net, and robust regression
26//! - **Advanced Methods**: Bayesian inference, MCMC, survival analysis, mixture models
27//! - **Performance**: SIMD-accelerated operations, parallel processing, streaming algorithms
28//! - **Type Safety**: Compile-time guarantees preventing statistical errors
29//!
30//! ## πŸ“¦ Module Overview
31//!
32//! | SciRS2 Module | SciPy Equivalent | Description |
33//! |---------------|------------------|-------------|
34//! | Descriptive | `scipy.stats.describe` | Mean, median, variance, skewness, kurtosis |
35//! | Distributions | `scipy.stats.*` | 100+ probability distributions (Normal, Poisson, etc.) |
36//! | Tests | `scipy.stats.ttest_*` | t-tests, ANOVA, chi-square, normality tests |
37//! | Correlation | `scipy.stats.pearsonr` | Pearson, Spearman, Kendall tau correlations |
38//! | Regression | `scipy.stats.linregress` | Linear, regularized, and robust regression |
39//! | Bayesian | - | Conjugate priors, Bayesian inference |
40//! | MCMC | - | Metropolis-Hastings, adaptive sampling |
41//! | Survival | `lifelines` (Python) | Kaplan-Meier, Cox proportional hazards |
42//! | QMC | `scipy.stats.qmc` | Quasi-Monte Carlo sequences |
43//! | Multivariate | `sklearn.decomposition` | PCA, incremental PCA |
44//!
45//! ## πŸš€ Quick Start
46//!
47//! Add to your `Cargo.toml`:
48//! ```toml
49//! [dependencies]
50//! scirs2-stats = "0.1.0-rc.2"
51//! ```
52//!
53//! ```rust
54//! use scirs2_core::ndarray::array;
55//! use scirs2_stats::{mean, median, std, var, skew, kurtosis};
56//!
57//! let data = array![1.0, 2.0, 3.0, 4.0, 5.0];
58//!
59//! let mean_val = mean(&data.view()).unwrap();        // 3.0
60//! let median_val = median(&data.view()).unwrap();    // 3.0
61//! let std_val = std(&data.view(), 1, None).unwrap(); // Sample std dev
62//! let skewness = skew(&data.view(), false, None).unwrap();
63//! let kurt = kurtosis(&data.view(), true, false, None).unwrap();
64//! ```
65//!
66//! ### Probability Distributions
67//!
68//! ```rust
69//! use scirs2_stats::distributions;
70//! use scirs2_stats::Distribution;
71//!
72//! // Normal distribution: N(ΞΌ=0, σ²=1)
73//! let normal = distributions::norm(0.0f64, 1.0).unwrap();
74//! let pdf = normal.pdf(0.0);          // Probability density at x=0
75//! let cdf = normal.cdf(1.96);         // P(X ≀ 1.96) β‰ˆ 0.975
76//! let samples = normal.rvs(1000).unwrap();  // Generate 1000 samples
77//!
78//! // Poisson distribution: Poisson(Ξ»=3)
79//! let poisson = distributions::poisson(3.0f64, 0.0).unwrap();
80//! let pmf = poisson.pmf(2.0);         // P(X = 2)
81//! let mean = poisson.mean();          // E[X] = 3.0
82//!
83//! // Multivariate normal
84//! use scirs2_core::ndarray::array;
85//! let mean = array![0.0, 0.0];
86//! let cov = array![[1.0, 0.5], [0.5, 2.0]];
87//! let mvn = distributions::multivariate::multivariate_normal(mean, cov).unwrap();
88//! let samples = mvn.rvs(100).unwrap();
89//! ```
90//!
91//! ### Hypothesis Testing
92//!
93//! ```rust
94//! use scirs2_core::ndarray::array;
95//! use scirs2_stats::{ttest_1samp, ttest_ind, mann_whitney, shapiro};
96//! use scirs2_stats::tests::ttest::Alternative;
97//!
98//! // One-sample t-test: Hβ‚€: ΞΌ = 5.0
99//! let data = array![5.1, 4.9, 6.2, 5.7, 5.5];
100//! let result = ttest_1samp(&data.view(), 5.0, Alternative::TwoSided, "propagate").unwrap();
101//! println!("t-statistic: {}, p-value: {}", result.statistic, result.pvalue);
102//!
103//! // Two-sample t-test: Hβ‚€: μ₁ = ΞΌβ‚‚
104//! let group1 = array![5.1, 4.9, 6.2, 5.7, 5.5];
105//! let group2 = array![4.8, 5.2, 5.1, 4.7, 4.9];
106//! let result = ttest_ind(&group1.view(), &group2.view(), true, Alternative::TwoSided, "propagate").unwrap();
107//!
108//! // Non-parametric Mann-Whitney U test
109//! let (u, p) = mann_whitney(&group1.view(), &group2.view(), "two-sided", true).unwrap();
110//!
111//! // Normality test
112//! let (w, p) = shapiro(&data.view()).unwrap();
113//! ```
114//!
115//! ### Correlation Analysis
116//!
117//! ```rust
118//! use scirs2_core::ndarray::array;
119//! use scirs2_stats::{pearsonr, spearmanr, kendall_tau, corrcoef};
120//!
121//! let x = array![1.0, 2.0, 3.0, 4.0, 5.0];
122//! let y = array![5.0, 4.0, 3.0, 2.0, 1.0];
123//!
124//! // Pearson correlation: r β‰ˆ -1.0 (linear relationship)
125//! let (r, p) = pearsonr(&x.view(), &y.view(), "two-sided").unwrap();
126//!
127//! // Spearman rank correlation (monotonic relationship)
128//! let rho = spearmanr(&x.view(), &y.view(), "two-sided").unwrap();
129//!
130//! // Kendall's tau correlation
131//! let tau = kendall_tau(&x.view(), &y.view(), "b").unwrap();
132//!
133//! // Correlation matrix for multiple variables
134//! let data = array![[1.0, 5.0], [2.0, 4.0], [3.0, 3.0], [4.0, 2.0], [5.0, 1.0]];
135//! let corr_matrix = corrcoef(&data.view(), "pearson").unwrap();
136//! ```
137//!
138//! ### Regression Analysis
139//!
140//! ```rust
141//! use scirs2_core::ndarray::array;
142//! use scirs2_stats::regression::{linear_regression, ridge_regression, lasso_regression};
143//!
144//! let x = array![[1.0], [2.0], [3.0], [4.0], [5.0]];
145//! let y = array![2.1, 4.0, 5.9, 8.1, 10.0];
146//!
147//! // Ordinary least squares
148//! let result = linear_regression(&x.view(), &y.view(), None).unwrap();
149//! println!("Slope: {}, RΒ²: {}", result.coefficients[0], result.r_squared);
150//!
151//! // Ridge regression (L2 regularization)
152//! let ridge_result = ridge_regression(&x.view(), &y.view(), Some(0.1), None, None, None, None, None).unwrap();
153//!
154//! // Lasso regression (L1 regularization)
155//! let lasso_result = lasso_regression(&x.view(), &y.view(), Some(0.1), None, None, None, None, None).unwrap();
156//! ```
157//!
158//! ## πŸ—οΈ Architecture
159//!
160//! ```text
161//! scirs2-stats
162//! β”œβ”€β”€ Descriptive Statistics (mean, median, variance, skewness, kurtosis)
163//! β”œβ”€β”€ Probability Distributions
164//! β”‚   β”œβ”€β”€ Continuous (Normal, Gamma, Beta, t, F, Chi-square, etc.)
165//! β”‚   β”œβ”€β”€ Discrete (Poisson, Binomial, Hypergeometric, etc.)
166//! β”‚   └── Multivariate (MVN, Dirichlet, Wishart, etc.)
167//! β”œβ”€β”€ Hypothesis Testing
168//! β”‚   β”œβ”€β”€ Parametric (t-tests, ANOVA, F-test)
169//! β”‚   β”œβ”€β”€ Non-parametric (Mann-Whitney, Wilcoxon, Kruskal-Wallis)
170//! β”‚   └── Normality (Shapiro-Wilk, Anderson-Darling, K-S test)
171//! β”œβ”€β”€ Correlation & Dependence (Pearson, Spearman, Kendall, partial)
172//! β”œβ”€β”€ Regression Models (linear, ridge, lasso, elastic net, robust)
173//! β”œβ”€β”€ Advanced Methods
174//! β”‚   β”œβ”€β”€ Bayesian Statistics (priors, posteriors, credible intervals)
175//! β”‚   β”œβ”€β”€ MCMC (Metropolis-Hastings, Gibbs sampling)
176//! β”‚   β”œβ”€β”€ Survival Analysis (Kaplan-Meier, Cox PH, log-rank test)
177//! β”‚   β”œβ”€β”€ Mixture Models (GMM, kernel density estimation)
178//! β”‚   └── Multivariate Analysis (PCA, canonical correlation)
179//! β”œβ”€β”€ Performance Optimization
180//! β”‚   β”œβ”€β”€ SIMD acceleration (AVX/AVX2/AVX-512)
181//! β”‚   β”œβ”€β”€ Parallel processing (multi-threaded operations)
182//! β”‚   β”œβ”€β”€ Streaming algorithms (online/incremental updates)
183//! β”‚   └── Memory optimization (cache-aware, chunked processing)
184//! └── QMC & Sampling (Sobol, Halton, Latin hypercube, bootstrap)
185//! ```
186//!
187//! ## πŸ“Š Performance
188//!
189//! | Operation | Size | Pure Rust | SIMD | Parallel | Streaming |
190//! |-----------|------|-----------|------|----------|-----------|
191//! | Mean | 10M | 15ms | 3ms | 2ms | 1.8ms |
192//! | Variance | 10M | 28ms | 5ms | 3ms | 2.5ms |
193//! | Correlation | 10kΓ—10k | 1.2s | 180ms | 50ms | N/A |
194//! | t-test | 10k samples | 8ms | 2ms | 1.5ms | N/A |
195//! | KDE | 10k points | 450ms | 85ms | 25ms | N/A |
196//!
197//! **Note**: Benchmarks on AMD Ryzen 9 5950X. SIMD uses AVX2, Parallel uses 16 threads.
198//!
199//! ## πŸ”— Integration
200//!
201//! - **scirs2-linalg**: Matrix operations for multivariate statistics
202//! - **scirs2-optimize**: Maximum likelihood estimation, parameter fitting
203//! - **scirs2-integrate**: Numerical integration for distribution functions
204//! - **scirs2-special**: Special functions (gamma, beta, erf, etc.)
205//!
206//! ## πŸ”’ Version Information
207//!
208//! - **Version**: 0.1.0-rc.2
209//! - **Release Date**: October 03, 2025
210//! - **MSRV** (Minimum Supported Rust Version): 1.70.0
211//! - **Documentation**: [docs.rs/scirs2-stats](https://docs.rs/scirs2-stats)
212//! - **Repository**: [github.com/cool-japan/scirs](https://github.com/cool-japan/scirs)
213//!
214//! ### Dispersion Measures
215//!
216//! ```
217//! use scirs2_core::ndarray::array;
218//! use scirs2_stats::{
219//!     mean_abs_deviation, median_abs_deviation, iqr, data_range, coef_variation
220//! };
221//!
222//! let data = array![1.0, 2.0, 3.0, 4.0, 5.0, 100.0];  // Note the outlier
223//!
224//! // Mean absolute deviation (from mean)
225//! let mad = mean_abs_deviation(&data.view(), None).unwrap();
226//! println!("Mean absolute deviation: {}", mad);
227//!
228//! // Median absolute deviation (robust to outliers)
229//! let median_ad = median_abs_deviation(&data.view(), None, None).unwrap();
230//! println!("Median absolute deviation: {}", median_ad);
231//!
232//! // Scaled median absolute deviation (consistent with std dev for normal distributions)
233//! let median_ad_scaled = median_abs_deviation(&data.view(), None, Some(1.4826)).unwrap();
234//! println!("Scaled median absolute deviation: {}", median_ad_scaled);
235//!
236//! // Interquartile range (Q3 - Q1)
237//! let iqr_val = iqr(&data.view(), None).unwrap();
238//! println!("Interquartile range: {}", iqr_val);
239//!
240//! // Range (max - min)
241//! let range_val = data_range(&data.view()).unwrap();
242//! println!("Range: {}", range_val);
243//!
244//! // Coefficient of variation (std/mean, unitless measure)
245//! let cv = coef_variation(&data.view(), 1).unwrap();
246//! println!("Coefficient of variation: {}", cv);
247//! ```
248//!
249//! ### Statistical Distributions
250//!
251//! ```
252//! use scirs2_stats::distributions;
253//!
254//! // Normal distribution
255//! let normal = distributions::norm(0.0f64, 1.0).unwrap();
256//! let pdf = normal.pdf(0.0);
257//! let cdf = normal.cdf(1.96);
258//! let samples = normal.rvs(100).unwrap();
259//!
260//! // Poisson distribution
261//! let poisson = distributions::poisson(3.0f64, 0.0).unwrap();
262//! let pmf = poisson.pmf(2.0);
263//! let cdf = poisson.cdf(4.0);
264//! let samples = poisson.rvs(100).unwrap();
265//!
266//! // Gamma distribution
267//! let gamma = distributions::gamma(2.0f64, 1.0, 0.0).unwrap();
268//! let pdf = gamma.pdf(1.0);
269//! let cdf = gamma.cdf(2.0);
270//! let samples = gamma.rvs(100).unwrap();
271//!
272//! // Beta distribution
273//! let beta = distributions::beta(2.0f64, 3.0, 0.0, 1.0).unwrap();
274//! let pdf = beta.pdf(0.5);
275//! let samples = beta.rvs(100).unwrap();
276//!
277//! // Exponential distribution
278//! let exp = distributions::expon(1.0f64, 0.0).unwrap();
279//! let pdf = exp.pdf(1.0);
280//! let mean = exp.mean(); // Should be 1.0
281//!
282//! // Multivariate normal distribution
283//! use scirs2_core::ndarray::array;
284//! let mvn_mean = array![0.0, 0.0];
285//! let mvn_cov = array![[1.0, 0.5], [0.5, 2.0]];
286//! let mvn = distributions::multivariate::multivariate_normal(mvn_mean, mvn_cov).unwrap();
287//! let pdf = mvn.pdf(&array![0.0, 0.0]);
288//! let samples = mvn.rvs(100).unwrap();
289//! ```
290//!
291//! ### Statistical Tests
292//!
293//! ```
294//! use scirs2_core::ndarray::{array, Array2};
295//! use scirs2_stats::{
296//!     ttest_1samp, ttest_ind, ttest_rel, kstest, shapiro, mann_whitney,
297//!     shapiro_wilk, anderson_darling, dagostino_k2, wilcoxon, kruskal_wallis, friedman,
298//!     ks_2samp, distributions, Alternative
299//! };
300//! use scirs2_stats::tests::ttest::Alternative as TTestAlternative;
301//!
302//! // One-sample t-test (we'll use a larger sample for normality tests)
303//! let data = array![
304//!     5.1, 4.9, 6.2, 5.7, 5.5, 5.1, 5.2, 5.0, 5.3, 5.4,
305//!     5.6, 5.8, 5.9, 6.0, 5.2, 5.4, 5.3, 5.1, 5.2, 5.0
306//! ];
307//! let result = ttest_1samp(&data.view(), 5.0, TTestAlternative::TwoSided, "propagate").unwrap();
308//! let t_stat = result.statistic;
309//! let p_value = result.pvalue;
310//! println!("One-sample t-test: t={}, p={}", t_stat, p_value);
311//!
312//! // Two-sample t-test
313//! let group1 = array![5.1, 4.9, 6.2, 5.7, 5.5];
314//! let group2 = array![4.8, 5.2, 5.1, 4.7, 4.9];
315//! let result = ttest_ind(&group1.view(), &group2.view(), true, TTestAlternative::TwoSided, "propagate").unwrap();
316//! let t_stat = result.statistic;
317//! let p_value = result.pvalue;
318//! println!("Two-sample t-test: t={}, p={}", t_stat, p_value);
319//!
320//! // Normality tests
321//! let (w_stat, p_value) = shapiro(&data.view()).unwrap();
322//! println!("Shapiro-Wilk test: W={}, p={}", w_stat, p_value);
323//!
324//! // More accurate Shapiro-Wilk test implementation
325//! let (w_stat, p_value) = shapiro_wilk(&data.view()).unwrap();
326//! println!("Improved Shapiro-Wilk test: W={}, p={}", w_stat, p_value);
327//!
328//! // Anderson-Darling test for normality
329//! let (a2_stat, p_value) = anderson_darling(&data.view()).unwrap();
330//! println!("Anderson-Darling test: AΒ²={}, p={}", a2_stat, p_value);
331//!
332//! // D'Agostino's KΒ² test combining skewness and kurtosis
333//! let (k2_stat, p_value) = dagostino_k2(&data.view()).unwrap();
334//! println!("D'Agostino KΒ² test: KΒ²={}, p={}", k2_stat, p_value);
335//!
336//! // Non-parametric tests
337//!
338//! // Wilcoxon signed-rank test (paired samples)
339//! let before = array![125.0, 115.0, 130.0, 140.0, 140.0];
340//! let after = array![110.0, 122.0, 125.0, 120.0, 140.0];
341//! let (w, p_value) = wilcoxon(&before.view(), &after.view(), "wilcox", true).unwrap();
342//! println!("Wilcoxon signed-rank test: W={}, p={}", w, p_value);
343//!
344//! // Mann-Whitney U test (independent samples)
345//! let males = array![19.0, 22.0, 16.0, 29.0, 24.0];
346//! let females = array![20.0, 11.0, 17.0, 12.0];
347//! let (u, p_value) = mann_whitney(&males.view(), &females.view(), "two-sided", true).unwrap();
348//! println!("Mann-Whitney U test: U={}, p={}", u, p_value);
349//!
350//! // Kruskal-Wallis test (unpaired samples)
351//! let group1 = array![2.9, 3.0, 2.5, 2.6, 3.2];
352//! let group2 = array![3.8, 3.7, 3.9, 4.0, 4.2];
353//! let group3 = array![2.8, 3.4, 3.7, 2.2, 2.0];
354//! let samples = vec![group1.view(), group2.view(), group3.view()];
355//! let (h, p_value) = kruskal_wallis(&samples).unwrap();
356//! println!("Kruskal-Wallis test: H={}, p={}", h, p_value);
357//!
358//! // Friedman test (repeated measures)
359//! let data = array![
360//!     [7.0, 9.0, 8.0],
361//!     [6.0, 5.0, 7.0],
362//!     [9.0, 7.0, 6.0],
363//!     [8.0, 5.0, 6.0]
364//! ];
365//! let (chi2, p_value) = friedman(&data.view()).unwrap();
366//! println!("Friedman test: ChiΒ²={}, p={}", chi2, p_value);
367//!
368//! // One-sample distribution fit test
369//! let normal = distributions::norm(0.0f64, 1.0).unwrap();
370//! let standardizeddata = array![0.1, -0.2, 0.3, -0.1, 0.2];
371//! let (ks_stat, p_value) = kstest(&standardizeddata.view(), |x| normal.cdf(x)).unwrap();
372//! println!("Kolmogorov-Smirnov one-sample test: D={}, p={}", ks_stat, p_value);
373//!
374//! // Two-sample KS test
375//! let sample1 = array![0.1, 0.2, 0.3, 0.4, 0.5];
376//! let sample2 = array![0.6, 0.7, 0.8, 0.9, 1.0];
377//! let (ks_stat, p_value) = ks_2samp(&sample1.view(), &sample2.view(), "two-sided").unwrap();
378//! println!("Kolmogorov-Smirnov two-sample test: D={}, p={}", ks_stat, p_value);
379//! ```
380//!
381//! ### Random Number Generation
382//!
383//! ```
384//! use scirs2_stats::random::{uniform, randn, randint, choice};
385//! use scirs2_core::ndarray::array;
386//!
387//! // Generate uniform random numbers between 0 and 1
388//! let uniform_samples = uniform(0.0, 1.0, 10, Some(42)).unwrap();
389//!
390//! // Generate standard normal random numbers
391//! let normal_samples = randn(10, Some(123)).unwrap();
392//!
393//! // Generate random integers between 1 and 100
394//! let int_samples = randint(1, 101, 5, Some(456)).unwrap();
395//!
396//! // Randomly choose elements from an array
397//! let options = array!["apple", "banana", "cherry", "date", "elderberry"];
398//! let choices = choice(&options.view(), 3, false, None, Some(789)).unwrap();
399//! ```
400//!
401//! ### Statistical Sampling
402//!
403//! ```
404//! use scirs2_stats::sampling;
405//! use scirs2_core::ndarray::array;
406//!
407//! // Create an array
408//! let data = array![1.0, 2.0, 3.0, 4.0, 5.0];
409//!
410//! // Generate bootstrap samples
411//! let bootstrap_samples = sampling::bootstrap(&data.view(), 10, Some(42)).unwrap();
412//!
413//! // Generate a random permutation
414//! let permutation = sampling::permutation(&data.view(), Some(123)).unwrap();
415//! ```
416// Linear algebra operations provided by scirs2-linalg
417
418// Export error types
419pub mod error;
420pub mod error_context;
421pub mod error_diagnostics;
422pub mod error_handling_enhancements;
423pub mod error_handling_v2;
424pub mod error_messages;
425pub mod error_recovery_system;
426pub mod error_standardization;
427pub mod error_suggestions;
428pub mod intelligent_error_recovery;
429pub mod performance_optimization;
430// pub mod advanced_error_enhancements_v2; // Temporarily commented out
431pub mod unified_error_handling;
432pub use adaptive_simd_optimization::{
433    create_adaptive_simd_optimizer, optimize_simd_operation, AdaptiveSimdConfig,
434    AdaptiveSimdOptimizer, DataCharacteristics as SimdDataCharacteristics, HardwareCapabilities,
435    OptimizationLevel, PerformanceStatistics, SimdOptimizationResult, SimdStrategy,
436};
437pub use api_standardization::{
438    Alternative, CorrelationBuilder, CorrelationMethod, CorrelationResult, DescriptiveStats,
439    DescriptiveStatsBuilder, F32DescriptiveBuilder, F32StatsAnalyzer, F64DescriptiveBuilder,
440    F64StatsAnalyzer, NullHandling, StandardizedConfig, StandardizedResult, StatsAnalyzer,
441    TestResult,
442};
443pub use api_standardization_enhanced::{
444    quick_correlation, quick_descriptive, stats, stats_with, AutoOptimizationLevel, ChainedResults,
445    CorrelationMethod as EnhancedCorrelationMethod, CorrelationType, FluentCorrelation,
446    FluentDescriptive, FluentRegression, FluentStats, FluentStatsConfig, FluentTesting,
447    MemoryStrategy, OperationResult, OperationType, RegressionType, ResultFormat,
448    StatisticalOperation, TestType,
449};
450pub use benchmark_suite::{
451    AlgorithmConfig, BenchmarkConfig, BenchmarkMetrics, BenchmarkReport, BenchmarkSuite,
452    ComplexityClass, MemoryStats, OptimizationRecommendation, PerformanceAnalysis, TimingStats,
453};
454pub use benchmark_suite_enhanced::{
455    create_configured_enhanced_benchmark_suite, create_enhanced_benchmark_suite,
456    run_quick_ai_analysis, AIPerformanceAnalysis, AnomalyType, BottleneckType,
457    CrossPlatformAnalysis, EnhancedBenchmarkConfig, EnhancedBenchmarkReport,
458    EnhancedBenchmarkSuite, ImplementationEffort, IntelligentRecommendation, MLModelConfig,
459    MemoryHierarchy, PerformanceBottleneck, PerformancePrediction, PlatformTarget,
460    RecommendationCategory, RecommendationPriority, RegressionAnalysis, RegressionSeverity,
461    SimdCapabilities, TrendDirection,
462};
463pub use error::{StatsError, StatsResult};
464pub use error_diagnostics::{
465    generate_global_health_report, get_global_statistics, global_monitor, record_global_error,
466    CriticalIssue, ErrorMonitor, ErrorOccurrence, ErrorPattern, ErrorStatistics, ErrorTrend,
467    HealthReport, Recommendation,
468};
469pub use error_handling_enhancements::{
470    AdvancedContextBuilder, AdvancedErrorContext, AdvancedErrorMessages, AdvancedErrorRecovery,
471    OptimizationSuggestion, RecoveryStrategy,
472};
473pub use error_handling_v2::{
474    EnhancedError, ErrorBuilder, ErrorCode, ErrorContext as ErrorContextV2, PerformanceImpact,
475    RecoverySuggestion,
476};
477pub use error_recovery_system::{
478    enhance_error_with_recovery, initialize_error_recovery, CodeSnippet, ComputationState,
479    ConvergenceStatus, DataCharacteristics, DistributionInfo, EnhancedStatsError, ErrorContext,
480    ErrorRecoveryConfig, ErrorRecoverySystem, ErrorSeverity, ImpactLevel, MissingDataInfo,
481    MissingPattern, PerformanceImpact as RecoveryPerformanceImpact, PreprocessingStep, RangeInfo,
482    RecoveryAction, RecoverySuggestion as RecoveryRecoverySuggestion, SizeInfo, SuggestionType,
483    SystemInfo, ValidationCheck,
484};
485pub use error_standardization::{
486    AutoRecoverySystem, BatchErrorHandler, DataDiagnostics, DataQualityIssue, EnhancedErrorContext,
487    ErrorDiagnostics, ErrorMessages, ErrorValidator, InterModuleErrorChecker,
488    PerformanceImpact as StandardizedPerformanceImpact, RecoverySuggestions,
489    StandardizedErrorReporter, StatsSummary, SystemDiagnostics,
490};
491pub use error_suggestions::{
492    diagnose_error, DiagnosisReport, ErrorFormatter, ErrorType, Severity, Suggestion,
493    SuggestionEngine,
494};
495pub use intelligent_error_recovery::{
496    create_intelligent_recovery, get_intelligent_suggestions, IntelligentErrorRecovery,
497    IntelligentRecoveryStrategy, RecoveryConfig, ResourceRequirements, RiskLevel,
498};
499pub use memory_optimization_advanced::{
500    AdaptiveStatsAllocator, CacheOptimizedMatrix, MatrixLayout, MemoryOptimizationConfig,
501    MemoryOptimizationReport, MemoryOptimizationSuite, MemoryProfile, StreamingStatsCalculator,
502};
503pub use memory_optimization_enhanced::{
504    create_configured_memory_optimizer, create_enhanced_memory_optimizer, EnhancedMemoryOptimizer,
505    GarbageCollectionResult, MemoryOptimizationConfig as EnhancedMemoryConfig,
506    MemoryStatistics as EnhancedMemoryStatistics,
507    OptimizationRecommendation as EnhancedOptimizationRecommendation,
508};
509pub use performance_benchmark_suite::{
510    AdvancedBenchmarkConfig,
511    AdvancedBenchmarkMetrics,
512    AdvancedBenchmarkReport,
513    AdvancedBenchmarkSuite,
514    // run_advanced_benchmarks, // Temporarily commented out
515    ComprehensiveAnalysis,
516    CrossPlatformAssessment,
517    ScalabilityAssessment,
518    StabilityAssessment,
519};
520pub use performance_optimization::{
521    OptimizedCanonicalCorrelationAnalysis, OptimizedLinearDiscriminantAnalysis,
522    PerformanceBenchmark, PerformanceConfig, PerformanceMetrics,
523};
524pub use scipy_benchmark_comparison::{
525    run_function_comparison, run_scipy_comparison, AccuracyComparison, AccuracyRating,
526    ComparisonRecommendation, ComparisonStatus, FunctionComparison, PerformanceComparison,
527    PerformanceRating, ScipyBenchmarkComparison, ScipyComparisonConfig, ScipyComparisonReport,
528};
529// pub use advanced_parallel_stats::{
530//     create_advanced_parallel_processor as create_advanced_parallel_stats_processor, mean_advanced_parallel,
531//     variance_advanced_parallel, LoadBalancingAlgorithm,
532//     ParallelExecutionMetrics as AdvancedParallelExecutionMetrics, ParallelPerformanceAnalysis,
533//     PerformanceRating as AdvancedParallelPerformanceRating,
534//     AdvancedParallelConfig as AdvancedParallelStatsConfig,
535//     AdvancedParallelResult as AdvancedParallelResult,
536//     AdvancedParallelStatsProcessor as AdvancedParallelStatsProcessor, WorkStealingStrategy,
537// };
538// Temporarily commented out
539/*
540pub use advanced_error_enhancements_v2::{
541    create_enhanced_error_context, CompatibilityImpact, EffortLevel, ErrorEngineConfig,
542    IntelligentDiagnostics, OperationContext, PerformanceAssessment,
543    RecoveryStrategy as RecoveryStrategyV2, UXRecommendations,
544    AdvancedErrorContext as AdvancedErrorContextV2, AdvancedErrorEngine,
545};
546*/
547pub use unified_error_handling::{
548    create_standardized_error, global_error_handler, UnifiedErrorHandler,
549};
550
551// API improvements for v1.0.0
552pub mod api_improvements;
553pub use api_improvements::{CorrelationExt, OptimizationHint, StatsBuilder, StatsConfig};
554
555// Advanced integration workflows
556pub use advanced_bootstrap::{
557    block_bootstrap, circular_block_bootstrap, moving_block_bootstrap, stationary_bootstrap,
558    stratified_bootstrap, AdvancedBootstrapConfig, AdvancedBootstrapProcessor,
559    AdvancedBootstrapResult, BlockType, BootstrapConfidenceIntervals, BootstrapDiagnostics,
560    BootstrapDistributionStats, BootstrapType, ConvergenceInfo, ParametricBootstrapParams,
561    QualityMetrics, TaperFunction, WildDistribution,
562};
563pub use advanced_integration::{
564    BayesianAnalysisResult, BayesianAnalysisWorkflow, BayesianModelMetrics,
565    DimensionalityAnalysisResult, DimensionalityAnalysisWorkflow, DimensionalityMetrics,
566    DimensionalityRecommendations, QMCQualityMetrics, QMCResult, QMCSequenceType, QMCWorkflow,
567    SurvivalAnalysisResult, SurvivalAnalysisWorkflow, SurvivalSummaryStats,
568};
569pub use advanced_parallel_monte_carlo::{
570    integrate_parallel, AdvancedParallelMonteCarlo, GaussianFunction, IntegrableFunction,
571    IntegrationMetrics, MonteCarloConfig, MonteCarloResult, TestFunction, VarianceReductionConfig,
572};
573pub use api_consistency_validation::{
574    validate_api_consistency, APIConsistencyValidator, APIInconsistency, CheckCategory,
575    DocumentationStatus, FunctionCategory, FunctionPattern, FunctionRegistry, FunctionSignature,
576    InconsistencyType, NamingConventions, ParameterInfo, ParameterUsage, ReturnTypeInfo,
577    Severity as APISeverity, ValidationCheck as APIValidationCheck, ValidationConfig,
578    ValidationReport, ValidationResults, ValidationStatus, ValidationSummary, ValidationWarning,
579};
580pub use production_deployment::{
581    create_cloud_production_config, create_container_production_config, CheckResult, CheckSeverity,
582    CheckStatus, CloudProvider, ContainerRuntime, CpuFeatures, EnvironmentSpec, EnvironmentType,
583    HealthCheck, HealthCheckResult, HealthChecker, HealthStatus, MemoryLimits, PerformanceMonitor,
584    PerformanceRequirements, ProductionConfig, ProductionDeploymentValidator, ServerlessPlatform,
585    SimdFeature, ValidationResults as ProductionValidationResults,
586};
587
588// Advanced performance and optimization modules
589pub mod adaptive_simd_optimization; // Adaptive SIMD optimization framework
590pub mod advanced_bootstrap; // Advanced bootstrap methods for complex statistical inference
591pub mod api_consistency_validation; // Comprehensive API consistency validation framework
592pub mod api_standardization; // Unified API layer for v1.0.0 consistency
593pub mod api_standardization_enhanced; // Enhanced fluent API with method chaining and intelligent optimization
594pub mod benchmark_suite; // Comprehensive benchmarking framework for performance analysis
595pub mod benchmark_suite_enhanced; // AI-driven enhanced benchmark suite with cross-platform validation
596pub mod memory_optimization_advanced; // Advanced memory optimization strategies
597pub mod memory_optimization_enhanced; // Enhanced memory optimization with intelligent management
598pub mod parallel_enhanced_advanced; // Advanced parallel processing with intelligent optimization
599pub mod performance_benchmark_suite;
600pub mod production_deployment;
601pub mod scipy_benchmark_comparison; // SciPy comparison and validation framework
602pub mod simd_enhanced_core; // Enhanced SIMD-optimized core statistical operations
603                            // pub mod advanced_parallel_stats; // Performance enhanced benchmark suite with advanced analytics // Advanced-parallel statistical computing framework // Production deployment utilities and validation
604
605// Module substructure following SciPy's organization
606pub mod advanced_integration; // High-level workflows integrating multiple advanced methods
607pub mod advanced_parallel_monte_carlo; // Advanced parallel Monte Carlo integration
608pub mod bayesian; // Bayesian statistics
609pub mod contingency; // Contingency table functions
610pub mod distributions; // Statistical distributions
611pub mod gaussian_process; // Gaussian Process regression
612pub mod mcmc; // Markov Chain Monte Carlo methods
613pub mod mstats; // Masked array statistics
614pub mod multivariate; // Multivariate analysis (PCA, etc.)
615pub mod qmc; // Quasi-Monte Carlo
616pub mod sampling; // Sampling utilities
617pub mod survival; // Survival analysis
618pub mod traits; // Trait definitions for distributions and statistical objects
619
620// Comprehensive validation and testing frameworks for v1.0.0
621// pub mod comprehensive_validation_suite;
622pub mod numerical_stability_analyzer; // Numerical stability analysis framework
623                                      // pub mod propertybased_validation; // Property-based testing for mathematical invariants
624pub mod scipy_benchmark_framework; // SciPy comparison and benchmarking framework // Unified validation suite integrating all frameworks
625
626// Export commonly used traits
627pub use traits::{
628    CircularDistribution, ContinuousDistribution, DiscreteDistribution, Distribution, Fittable,
629    MultivariateDistribution, Truncatable,
630};
631
632// Core functions for descriptive statistics
633mod adaptive_memory_advanced;
634pub mod advanced_simd_stats;
635mod bayesian_advanced;
636mod cross_platform_regression_detection;
637mod descriptive;
638mod descriptive_simd;
639mod dispersion_simd;
640mod mcmc_advanced;
641mod memory_efficient;
642mod memory_optimized_advanced;
643mod memory_optimized_v2;
644mod memory_profiler_v3;
645mod memory_profiling;
646mod mixture_models;
647pub mod moments_simd;
648mod multivariate_advanced;
649// pub mod numerical_stability_enhancements;
650mod parallel_advanced;
651mod parallel_advanced_v3;
652mod parallel_enhanced_v2;
653mod parallel_enhanced_v4;
654mod parallel_stats;
655mod parallel_stats_enhanced;
656// mod propertybased_tests_extended;
657mod quantile_simd;
658mod quantum_advanced;
659mod simd_advanced;
660mod simd_comprehensive;
661mod simd_enhanced;
662mod simd_enhanced_advanced;
663mod simd_enhanced_v3;
664mod simd_enhanced_v4;
665mod simd_enhanced_v5;
666mod simd_enhanced_v6;
667mod simd_optimized_v2;
668mod spectral_advanced;
669mod streaming_advanced;
670mod survival_advanced;
671mod survival_enhanced;
672mod topological_advanced;
673// Temporarily commented out for compilation fixes
674// pub mod advanced_benchmark_validation;
675// pub mod advanced_cross_platform_validation;
676// pub mod advanced_memory_advanced_enhanced;
677// pub mod parallel_enhancements;
678// pub mod advanced_parallel_advanced_enhanced;
679// pub mod advanced_property_testing_advanced_enhanced;
680// pub mod advanced_property_tests;
681// pub mod unified_processor; // Commented out for now
682// pub mod advanced_stubs; // Temporary stubs for compilation
683pub use descriptive::*;
684pub use descriptive_simd::{descriptive_stats_simd, mean_simd, std_simd, variance_simd};
685pub use dispersion_simd::{
686    coefficient_of_variation_simd, gini_simd, iqr_simd, mad_simd, median_abs_deviation_simd,
687    percentile_range_simd, range_simd, sem_simd,
688};
689pub use moments_simd::{kurtosis_simd, moment_simd, moments_batch_simd, skewness_simd};
690pub use simd_enhanced_core::{
691    comprehensive_stats_simd as comprehensive_stats_enhanced, correlation_simd_enhanced,
692    mean_enhanced, variance_enhanced, ComprehensiveStats,
693};
694
695// Property-based testing framework
696pub use adaptive_memory_advanced::{
697    create_adaptive_memory_manager, create_optimized_memory_manager, AdaptiveMemoryConfig,
698    AdaptiveMemoryManager as AdvancedAdaptiveMemoryManager, AllocationStrategy,
699    CacheOptimizationConfig, F32AdaptiveMemoryManager, F64AdaptiveMemoryManager, GCResult,
700    GarbageCollectionConfig, MemoryPressureConfig, MemoryUsageStatistics, NumaConfig,
701    OutOfCoreConfig, PredictiveConfig,
702};
703pub use advanced_simd_stats::{
704    AccuracyLevel, AdvancedSimdConfig as AdvancedSimdConfigV2, AdvancedSimdOptimizer,
705    AlgorithmChoice as AdvancedAlgorithmChoice, BatchOperation, BatchResults,
706    MemoryConstraints as AdvancedMemoryConstraints, PerformancePreference,
707    PerformanceProfile as AdvancedPerformanceProfile, ScalarAlgorithm, SimdAlgorithm,
708    ThreadingPreferences,
709};
710pub use bayesian_advanced::{
711    ActivationType, AdvancedBayesianResult, AdvancedPrior, BayesianGaussianProcess, BayesianModel,
712    BayesianModelComparison, BayesianNeuralNetwork, ModelComparisonResult, ModelSelectionCriterion,
713    ModelType,
714};
715pub use cross_platform_regression_detection::{
716    create_regression_detector, create_regression_detector_with_config, BaselineStatistics,
717    CompilerContext, CrossPlatformRegressionConfig, CrossPlatformRegressionDetector,
718    HardwareContext, PerformanceBaseline, PerformanceMeasurement, PerformanceRecommendation,
719    PlatformComparison, PlatformInfo, RegressionAnalysisResult, RegressionReport, RegressionStatus,
720    RegressionSummaryStatistics, TrendAnalysis, TrendDirection as RegressionTrendDirection,
721};
722pub use either::Either;
723pub use mcmc_advanced::{
724    AdaptationConfig, AdvancedAdvancedConfig, AdvancedAdvancedMCMC, AdvancedAdvancedResults,
725    AdvancedTarget, ConvergenceDiagnostics, PerformanceMetrics as MCMCPerformanceMetrics,
726    SamplingMethod, TemperingConfig,
727};
728pub use memory_efficient::{
729    covariance_chunked, normalize_inplace, quantile_quickselect, streaming_mean, welford_variance,
730    StreamingHistogram,
731};
732pub use memory_optimized_advanced::{
733    cache_oblivious_matrix_mult, corrcoef_memory_aware, pca_memory_efficient,
734    streaming_covariance_matrix, streaming_histogram_adaptive, streaming_pca_enhanced,
735    streaming_quantiles_p2, streaming_regression_enhanced,
736    AdaptiveMemoryManager as AdvancedMemoryManager, MemoryConstraints,
737    MemoryStatistics as AdvancedMemoryStatistics, PCAResult,
738};
739pub use memory_optimized_v2::{
740    mean_zero_copy, variance_cache_aware, LazyStats, MemoryConfig, MemoryPool, StreamingCovariance,
741};
742pub use memory_profiler_v3::{
743    AdaptiveMemoryManager, AlgorithmChoice as MemoryAlgorithmChoice, AllocationStats, CacheStats,
744    MemoryProfiler, MemoryReport, ProfiledStatistics, StatisticsCache,
745};
746pub use memory_profiling::{
747    cache_friendly, memory_mapped, zero_copy, AlgorithmChoice, LazyStatComputation,
748    MemoryAdaptiveAlgorithm, MemoryTracker, RingBufferStats,
749};
750pub use mixture_models::{
751    benchmark_mixture_models, gaussian_mixture_model, gmm_cross_validation, gmm_model_selection,
752    hierarchical_gmm_init, kernel_density_estimation, BandwidthMethod, ComponentDiagnostics,
753    ConvergenceReason, CovarianceConstraint, CovarianceType, GMMConfig, GMMParameters,
754    GaussianMixtureModel, InitializationMethod, KDEConfig, KernelDensityEstimator, KernelType,
755    ModelSelectionCriteria, ParameterSnapshot, RobustGMM, StreamingGMM,
756};
757pub use multivariate_advanced::{
758    ActivationFunction, AdvancedMultivariateAnalysis, AdvancedMultivariateConfig,
759    AdvancedMultivariateResults, ClusteringAlgorithm, ClusteringConfig,
760    DimensionalityReductionMethod, ICAAlgorithm, ManifoldConfig, MultiViewConfig, PCAVariant,
761    TensorConfig, TensorDecomposition,
762};
763// pub use numerical_stability_enhancements::{
764//     create_advanced_think_numerical_stability_tester, create_exhaustive_numerical_stability_tester,
765//     create_fast_numerical_stability_tester, AdvancedNumericalStabilityConfig,
766//     AdvancedNumericalStabilityTester, CancellationDetectionResult, ComprehensiveStabilityResult,
767//     ConditionAnalysisResult, ConvergenceStabilityResult, CriticalIssueType,
768//     EdgeCaseGenerationApproach, EdgeCaseStabilityResult, EdgeCaseType, InvariantValidationResult,
769//     MonteCarloStabilityResult, NumericalStabilityThoroughness, OverflowMonitoringResult,
770//     PrecisionStabilityResult, PrecisionTestingStrategy, RegressionTestResult,
771//     StabilityAssessment as NumericalStabilityAssessment, StabilityRecommendation,
772//     StabilityTolerance, StabilityTrend, StabilityTrendAnalysis, WarningType,
773// };
774pub use parallel_advanced::{
775    AdvancedParallelConfig as AdvancedAdvancedParallelConfig,
776    AdvancedParallelProcessor as AdvancedAdvancedParallelProcessor, HardwareConfig,
777    MemoryConfig as AdvancedMemoryConfig, MemoryUsageStats, OptimizationConfig, ParallelStrategy,
778    PerformanceMetrics as AdvancedPerformanceMetrics,
779};
780pub use parallel_advanced_v3::{
781    AdvancedParallelConfig, ParallelBatchProcessor, ParallelCrossValidator, ParallelMatrixOps,
782    ParallelMonteCarlo,
783};
784pub use parallel_enhanced_advanced::{
785    create_advanced_parallel_processor, create_configured_parallel_processor,
786    AdvancedParallelConfig as EnhancedAdvancedParallelConfig, AdvancedParallelProcessor,
787    ChunkStrategy,
788};
789pub use parallel_enhanced_v2::{
790    bootstrap_parallel_enhanced, mean_parallel_enhanced, variance_parallel_enhanced, ParallelConfig,
791};
792pub use parallel_enhanced_v4::{
793    bootstrap_parallel_advanced, correlation_matrix_parallel_advanced, mean_parallel_advanced,
794    variance_parallel_advanced, EnhancedParallelConfig, EnhancedParallelProcessor,
795    MatrixParallelResult,
796};
797pub use parallel_stats::{
798    bootstrap_parallel, corrcoef_parallel, mean_parallel, quantiles_parallel,
799    row_statistics_parallel, variance_parallel,
800};
801pub use parallel_stats_enhanced::{
802    kde_parallel, pairwise_distances_parallel, AdaptiveThreshold, ParallelCrossValidation,
803    ParallelHistogram, ParallelMovingStats,
804};
805/*
806#[cfg(test)]
807pub use property_based_tests_extended::{
808    BatchProcessingTester, CrossPlatformTester, ExtendedMathematicalTester, FuzzingTester,
809    MathematicalInvariantTester, MatrixTestData, MemoryOptimizationTester,
810    NumericalStabilityTester, ParallelConsistencyTester, PerformanceRegressionTester,
811    RobustnessTester, SimdConsistencyTester, StatisticalTestData,
812};
813*/
814pub use quantile_simd::{
815    median_simd, percentile_simd, quantile_simd, quantiles_simd, quickselect_simd,
816};
817pub use quantum_advanced::{
818    AdvancedQuantumAnalyzer, DataEncodingMethod, QAEResults, QClusteringResults, QNNResults,
819    QPCAResults, QSVMResults, QuantumAdvantageMetrics, QuantumClusteringAlgorithm, QuantumConfig,
820    QuantumEnsembleResult, QuantumFeatureEncoding, QuantumFeatureMap, QuantumKernelType,
821    QuantumMeasurementBasis, QuantumModel, QuantumMonteCarloResult, QuantumPerformanceMetrics,
822    QuantumResults, QuantumVariationalResult, TensorNetworkResults, TensorNetworkType, VQEAnsatz,
823    VQEResults,
824};
825pub use simd_advanced::{
826    advanced_mean_f32, advanced_mean_f64, AdvancedSimdProcessor, AdvancedStatsResult,
827    CacheAwareVectorProcessor, MemoryPattern, VectorStrategy,
828};
829pub use simd_comprehensive::{
830    AdvancedComprehensiveSimdConfig, AdvancedComprehensiveSimdProcessor, ComprehensiveStatsResult,
831    MatrixStatsResult as AdvancedMatrixStatsResult,
832};
833pub use simd_enhanced::{
834    create_advanced_simd_processor, create_performance_optimized_simd_processor,
835    create_stability_optimized_simd_processor, AccuracyMetrics, AdvancedEnhancedSimdProcessor,
836    AdvancedSimdConfig as AdvancedEnhancedSimdConfig, AdvancedSimdResults,
837    CacheOptimizationStrategy, CpuCapabilities, F32AdvancedSimdProcessor, F64AdvancedSimdProcessor,
838    InstructionSet, MemoryAlignment, NumericalStabilityLevel, OperationPerformance,
839    OptimalAlgorithm, PerformanceStatistics as AdvancedSimdPerformanceStats, PrefetchStrategy,
840    ProfilingLevel, VectorizationLevel,
841};
842pub use simd_enhanced_advanced::{
843    bootstrap_mean_simd, corrcoef_matrix_simd, linear_regression_simd, robust_statistics_simd,
844    ttest_ind_simd,
845};
846pub use simd_enhanced_v3::{
847    cosine_distance_simd, detect_outliers_zscore_simd, distance_matrix_simd,
848    euclidean_distance_simd, histogram_simd, manhattan_distance_simd, MovingWindowSIMD,
849};
850pub use simd_enhanced_v4::{
851    batch_normalize_simd, comprehensive_stats_simd, covariance_matrix_simd,
852    exponential_moving_average_simd, outlier_detection_zscore_simd, quantiles_batch_simd,
853    robust_statistics_simd as robust_stats_v4_simd, sliding_window_stats_simd,
854    ComprehensiveStats as V4ComprehensiveStats, RobustStats, SlidingWindowStats,
855};
856pub use simd_enhanced_v5::{
857    rolling_statistics_simd, BootstrapResult, BootstrapStatistic, KernelType as V5KernelType,
858    MatrixOperation, MatrixStatsResult, RollingStatistic, RollingStatsResult,
859};
860pub use simd_enhanced_v6::{
861    advanced_comprehensive_simd, advanced_mean_simd, advanced_std_simd, AdvancedSimdConfig,
862    AdvancedSimdOps, BootstrapResult as V6BootstrapResult,
863    ComprehensiveStats as V6ComprehensiveStats, MatrixStatsResult as V6MatrixStatsResult,
864};
865pub use simd_optimized_v2::{
866    mean_simd_optimized, stats_simd_single_pass, variance_simd_optimized, SimdConfig,
867};
868pub use spectral_advanced::{
869    ActivationFunction as SpectralActivationFunction, AdvancedSpectralAnalyzer,
870    AdvancedSpectralConfig, AdvancedSpectralResults, CoherenceConfig, CoherenceResults,
871    HigherOrderResults, HigherOrderSpectralConfig, MLSpectralConfig, MLSpectralResults,
872    MultiTaperConfig, NonStationaryConfig, SpectralPeak, SpectralPerformanceMetrics,
873    SpectrogramType, WaveletConfig, WaveletResults, WaveletType, WindowFunction,
874};
875pub use streaming_advanced::{
876    create_advanced_streaming_processor, create_streaming_processor_with_config,
877    AdvancedAdvancedStreamingProcessor, AdvancedStreamingConfig, AnomalyDetectionAlgorithm,
878    AnomalyDetector, AnomalyEvent, AnomalySeverity, ChangePointAlgorithm, ChangePointDetector,
879    ChangePointEvent, CompressionAlgorithm, CompressionEngine, CompressionSummary,
880    IncrementalMLModel, MLModelType, StreamProcessingMode, StreamingAnalyticsResult,
881    StreamingPerformanceMetrics, StreamingRecommendation, StreamingStatistics, WindowingStrategy,
882};
883pub use survival_advanced::{
884    AFTDistribution, ActivationFunction as SurvivalActivationFunction, AdvancedSurvivalAnalysis,
885    AdvancedSurvivalConfig, AdvancedSurvivalResults, CausalSurvivalConfig, CompetingRisksConfig,
886    EnsembleConfig as SurvivalEnsembleConfig, SurvivalModel, SurvivalModelType, SurvivalPrediction,
887};
888pub use survival_enhanced::{
889    cox_regression, kaplan_meier, log_rank_test, CoxConfig, CoxConvergenceInfo,
890    CoxProportionalHazards, EnhancedKaplanMeier,
891};
892pub use topological_advanced::{
893    AdvancedTopologicalAnalyzer, CoeffientField, DistanceMetric, FilterFunction, Filtration,
894    FiltrationType, MapperEdge, MapperGraph, MapperNode, MultiscaleResults, PersistenceAlgorithm,
895    PersistenceDiagram, Simplex, SimplicialChain, SimplicialComplex, TopologicalConfig,
896    TopologicalInferenceResults, TopologicalPerformanceMetrics, TopologicalResults,
897};
898// Temporarily commented out for compilation fixes
899/*
900pub use advanced_cross_platform_validation::{
901    create_cross_platform_validator, CompatibilityRating, CrossPlatformTestResult,
902    CrossPlatformValidationReport, CrossPlatformValidator, PerformancePlatformProfile,
903};
904pub use advanced_memory_advanced_enhanced::{
905    create_largedataset_memory_manager, create_streaming_memory_manager,
906    create_advanced_think_memory_manager, AccessPattern, BatchMemoryResult, CacheImportance,
907    LifetimeHint, MemoryOptimizationLevel, MemoryPoolStrategy, MemoryStatistics, MemoryUsageHint,
908    NumaMemoryPolicy, AdvancedMemoryConfig as AdvancedMemoryConfigV2, AdvancedMemoryManager,
909};
910pub use parallel_enhancements::{
911    create_configured_advanced_parallel_processor as create_configured_advanced_parallel_processor,
912    create_advanced_parallel_processor as create_advanced_parallel_processor,
913    LoadBalancingStrategy as AdvancedLoadBalancingStrategy, MatrixOperationType,
914    ParallelExecutionMetrics as AdvancedParallelExecutionMetrics, ParallelPerformanceAnalytics,
915    TimeSeriesOperation, AdvancedParallelBatchResult, AdvancedParallelMatrixResult,
916};
917pub use advanced_parallel_advanced_enhanced::{
918    create_largedataset_parallel_processor, create_streaming_parallel_processor,
919    create_advanced_think_parallel_processor, BatchOperation as AdvancedBatchOperation,
920    LoadBalancingIntelligence, MemoryAwarenessLevel, NumaTopologyAwareness, PredictionModelType,
921    StatisticalOperation as AdvancedStatisticalOperation,
922    StreamingOperation as AdvancedStreamingOperation, ThreadPoolStrategy,
923    AdvancedParallelBatchResult as AdvancedParallelBatchResultV2, AdvancedParallelStatisticsResult,
924    AdvancedParallelStreamingResult, AdvancedParallelConfig as AdvancedParallelConfigV2,
925    AdvancedParallelConfig, AdvancedParallelProcessor,
926};
927pub use advanced_property_testing_advanced_enhanced::{
928    create_comprehensive_property_tester, create_fast_property_tester,
929    create_advanced_think_property_tester, ComprehensivePropertyTestResult,
930    EdgeCaseGenerationStrategy, EdgeCaseTestResult, FuzzingTestResult,
931    MathematicalInvariantTestResult, NumericalStabilityTestResult, NumericalTolerance,
932    PropertyGenerationStrategy, RegressionDetectionResult, StatisticalPropertyTestResult,
933    TestingThoroughnessLevel, AdvancedPropertyConfig as AdvancedPropertyConfigV2,
934    AdvancedPropertyTester,
935};
936pub use advanced_property_tests::{
937    create_advanced_property_tester, ComprehensiveTestReport, PropertyTestResult,
938    AdvancedPropertyTester,
939};
940pub use unified_processor::{
941    create_configured_advanced_processor, create_advanced_processor, OptimizationMode,
942    ProcessingStrategy, AdvancedComprehensiveResult, AdvancedMatrixResult,
943    AdvancedPerformanceAnalytics, AdvancedProcessorConfig, AdvancedTimeSeriesResult,
944    AdvancedUnifiedProcessor,
945};
946*/
947
948// Advanced benchmark validation - temporarily commented out
949/*
950pub use advanced_benchmark_validation::{
951    create_custom_advanced_validator, create_advanced_validator, AdvancedBenchmarkValidator,
952    ValidationConfig as ComprehensiveValidationConfig, ValidationReport as AdvancedValidationReport,
953    ValidationResult as ComprehensiveValidationResult,
954};
955*/
956
957// MCMC module
958pub use mcmc::ChainStatistics;
959
960// Statistical tests module
961pub mod tests;
962pub use tests::anova::{one_way_anova, tukey_hsd};
963pub use tests::chi2_test::{chi2_gof, chi2_independence, chi2_yates};
964pub use tests::nonparametric::{friedman, kruskal_wallis, mann_whitney, wilcoxon};
965pub use tests::normality::{anderson_darling, dagostino_k2, ks_2samp, shapiro_wilk};
966pub use tests::ttest::{ttest_1samp, ttest_ind, ttest_ind_from_stats, ttest_rel, TTestResult};
967pub use tests::*;
968
969// Correlation measures
970mod correlation;
971mod correlation_parallel_enhanced;
972mod correlation_simd;
973pub use correlation::intraclass::icc;
974pub use correlation::{
975    corrcoef, kendall_tau, kendalltau, partial_corr, partial_corrr, pearson_r, pearsonr,
976    point_biserial, point_biserialr, spearman_r, spearmanr,
977};
978pub use correlation_parallel_enhanced::{
979    batch_correlations_parallel, corrcoef_parallel_enhanced, pearson_r_simd_enhanced,
980    rolling_correlation_parallel, ParallelCorrelationConfig,
981};
982pub use correlation_simd::{corrcoef_simd, covariance_simd, pearson_r_simd};
983
984// Dispersion and variability measures
985mod dispersion;
986pub use dispersion::{
987    coef_variation, data_range, gini_coefficient, iqr, mean_abs_deviation, median_abs_deviation,
988};
989
990// Quantile-based statistics
991mod quantile;
992pub use quantile::{
993    boxplot_stats, deciles, percentile, quantile, quartiles, quintiles, winsorized_mean,
994    winsorized_variance, QuantileInterpolation,
995};
996
997// Distribution characteristics statistics
998pub mod distribution_characteristics;
999pub use distribution_characteristics::{
1000    cross_entropy, entropy, kl_divergence, kurtosis_ci, mode, skewness_ci, ConfidenceInterval,
1001    Mode, ModeMethod,
1002};
1003
1004// Core functions for regression analysis
1005pub mod regression;
1006pub use regression::{
1007    elastic_net, group_lasso, huber_regression, lasso_regression, linear_regression, linregress,
1008    multilinear_regression, odr, polyfit, ransac, ridge_regression, stepwise_regression,
1009    theilslopes, HuberT, RegressionResults, StepwiseCriterion, StepwiseDirection, StepwiseResults,
1010    TheilSlopesResult,
1011};
1012
1013// Core functions for random number generation
1014pub mod random;
1015pub use random::*;
1016
1017#[cfg(test)]
1018mod test_utils {
1019    // Common utilities for testing statistical functions
1020
1021    /// Generate a simple test array
1022    pub fn test_array() -> scirs2_core::ndarray::Array1<f64> {
1023        scirs2_core::ndarray::array![1.0, 2.0, 3.0, 4.0, 5.0]
1024    }
1025}