scirs2_spatial/lib.rs
1#![allow(unreachable_code)]
2#![allow(unused_mut)]
3#![allow(missing_docs)]
4#![allow(for_loops_over_fallibles)]
5#![allow(unreachable_patterns)]
6#![allow(unused_assignments)]
7#![allow(unused_variables)]
8#![allow(private_interfaces)]
9#![allow(clippy::must_use_unit)]
10#![allow(clippy::len_without_is_empty)]
11#![allow(clippy::missing_safety_doc)]
12#![allow(clippy::needless_range_loop)]
13#![allow(clippy::doc_lazy_continuation)]
14#![allow(clippy::borrowed_box)]
15#![allow(clippy::unused_must_use)]
16#![allow(clippy::should_implement_trait)]
17#![allow(clippy::doc_list_overindent)]
18#![allow(clippy::doc_overindented_list_items)]
19#![allow(unused_must_use)]
20//! # SciRS2 Spatial - Spatial Algorithms and Data Structures
21//!
22//! **scirs2-spatial** provides comprehensive spatial algorithms modeled after SciPy's `spatial` module,
23//! offering distance metrics, KD-trees, ball trees, Delaunay triangulation, convex hulls, Voronoi diagrams,
24//! and path planning with SIMD acceleration and parallel processing.
25//!
26//! ## 🎯 Key Features
27//!
28//! - **SciPy Compatibility**: Drop-in replacement for `scipy.spatial` functions
29//! - **Distance Metrics**: 20+ metrics (Euclidean, Manhattan, Minkowski, cosine, etc.)
30//! - **Spatial Trees**: KD-tree and ball tree for efficient nearest neighbor queries
31//! - **Computational Geometry**: Delaunay triangulation, Voronoi diagrams, convex hulls
32//! - **Set Distances**: Hausdorff, Wasserstein (Earth Mover's Distance)
33//! - **Path Planning**: A*, RRT, visibility graphs for robotics/navigation
34//! - **Performance**: SIMD-accelerated distance computations, parallel queries
35//!
36//! ## 📦 Module Overview
37//!
38//! | SciRS2 Module | SciPy Equivalent | Description |
39//! |---------------|------------------|-------------|
40//! | `distance` | `scipy.spatial.distance` | Distance metrics and matrices |
41//! | `KDTree` | `scipy.spatial.KDTree` | K-dimensional tree for nearest neighbors |
42//! | `cKDTree` | `scipy.spatial.cKDTree` | Optimized KD-tree (C-accelerated) |
43//! | `ConvexHull` | `scipy.spatial.ConvexHull` | Convex hull computation |
44//! | `Delaunay` | `scipy.spatial.Delaunay` | Delaunay triangulation |
45//! | `Voronoi` | `scipy.spatial.Voronoi` | Voronoi diagram |
46//! | `transform` | `scipy.spatial.transform` | Rotation and transformation utilities |
47//!
48//! ## 🚀 Quick Start
49//!
50//! ```toml
51//! [dependencies]
52//! scirs2-spatial = "0.1.0"
53//! ```
54//!
55//! ```rust
56//! use scirs2_spatial::{KDTree, distance};
57//! use scirs2_core::ndarray::array;
58//!
59//! // KD-Tree for nearest neighbor search
60//! let points = array![[0.0, 0.0], [1.0, 0.0], [0.0, 1.0], [1.0, 1.0]];
61//! let tree = KDTree::new(&points).unwrap();
62//! let (indices, dists) = tree.query(&[0.5, 0.5], 2).unwrap();
63//!
64//! // Distance computation
65//! let d = distance::euclidean(&[1.0, 2.0], &[4.0, 6.0]);
66//! ```
67//!
68//! ## 🔒 Version: 0.1.0 (December 29, 2025)
69//
70// ## Features
71//
72// * Efficient nearest-neighbor queries with KD-Tree and Ball Tree data structures
73// * Comprehensive set of distance metrics (Euclidean, Manhattan, Minkowski, etc.)
74// * Distance matrix computations (similar to SciPy's cdist and pdist)
75// * Convex hull computation using the Qhull library
76// * Delaunay triangulation for 2D and higher dimensions
77// * Customizable distance metrics for spatial data structures
78// * Advanced query capabilities (k-nearest neighbors, radius search)
79// * Set-based distances (Hausdorff, Wasserstein)
80// * Polygon operations (point-in-polygon, area, centroid)
81// * Path planning algorithms (A*, RRT, visibility graphs)
82// * **Advanced MODE: Revolutionary Computing Paradigms** - Quantum-neuromorphic fusion, next-gen GPU architectures, AI-driven optimization, extreme performance beyond current limits
83//
84// ## Examples
85//
86// ### Distance Metrics
87//
88// ```
89// use scirs2_spatial::distance::euclidean;
90//
91// let point1 = &[1.0, 2.0, 3.0];
92// let point2 = &[4.0, 5.0, 6.0];
93//
94// let dist = euclidean(point1, point2);
95// println!("Euclidean distance: {}", dist);
96// ```
97//
98// ### KD-Tree for Nearest Neighbor Searches
99//
100// ```
101// use scirs2_spatial::KDTree;
102// use scirs2_core::ndarray::array;
103//
104// // Create points
105// let points = array![[0.0, 0.0], [1.0, 0.0], [0.0, 1.0], [1.0, 1.0]];
106//
107// // Build KD-Tree
108// let kdtree = KDTree::new(&points).unwrap();
109//
110// // Find 2 nearest neighbors to [0.5, 0.5]
111// let (indices, distances) = kdtree.query(&[0.5, 0.5], 2).unwrap();
112// println!("Indices of 2 nearest points: {:?}", indices);
113// println!("Distances to 2 nearest points: {:?}", distances);
114//
115// // Find all points within radius 0.7
116// let (idx_radius, dist_radius) = kdtree.query_radius(&[0.5, 0.5], 0.7).unwrap();
117// println!("Found {} points within radius 0.7", idx_radius.len());
118// ```
119//
120// ### Distance Matrices
121//
122// ```
123// use scirs2_spatial::distance::{pdist, euclidean};
124// use scirs2_core::ndarray::array;
125//
126// // Create points
127// let points = array![[0.0, 0.0], [1.0, 0.0], [0.0, 1.0]];
128//
129// // Calculate pairwise distance matrix
130// let dist_matrix = pdist(&points, euclidean);
131// println!("Distance matrix shape: {:?}", dist_matrix.shape());
132// ```
133//
134// ### Convex Hull
135//
136// ```
137// use scirs2_spatial::convex_hull::ConvexHull;
138// use scirs2_core::ndarray::array;
139//
140// // Create points
141// let points = array![[0.0, 0.0], [1.0, 0.0], [0.0, 1.0], [0.5, 0.5]];
142//
143// // Compute convex hull
144// let hull = ConvexHull::new(&points.view()).unwrap();
145//
146// // Get the hull vertices
147// let vertices = hull.vertices();
148// println!("Hull vertices: {:?}", vertices);
149//
150// // Check if a point is inside the hull
151// let is_inside = hull.contains(&[0.25, 0.25]).unwrap();
152// println!("Is point [0.25, 0.25] inside? {}", is_inside);
153// ```
154//
155// ### Delaunay Triangulation
156//
157// ```
158// use scirs2_spatial::delaunay::Delaunay;
159// use scirs2_core::ndarray::array;
160//
161// // Create points
162// let points = array![[0.0, 0.0], [1.0, 0.0], [0.0, 1.0], [1.0, 1.0]];
163//
164// // Compute Delaunay triangulation
165// let tri = Delaunay::new(&points).unwrap();
166//
167// // Get the simplices (triangles in 2D)
168// let simplices = tri.simplices();
169// println!("Triangles: {:?}", simplices);
170//
171// // Find which triangle contains a point
172// if let Some(idx) = tri.find_simplex(&[0.25, 0.25]) {
173// println!("Point [0.25, 0.25] is in triangle {}", idx);
174// }
175// ```
176//
177// ### Alpha Shapes
178//
179// ```
180// use scirs2_spatial::AlphaShape;
181// use scirs2_core::ndarray::array;
182//
183// // Create a point set with some outliers
184// let points = array![
185// [0.0, 0.0], [1.0, 0.0], [1.0, 1.0], [0.0, 1.0], // Square corners
186// [0.5, 0.5], // Interior point
187// [2.0, 0.5], [3.0, 0.5] // Outliers
188// ];
189//
190// // Compute alpha shape with different alpha values
191// let alpha_small = AlphaShape::new(&points, 0.3).unwrap();
192// let alpha_large = AlphaShape::new(&points, 1.5).unwrap();
193//
194// // Get boundary (edges in 2D)
195// let boundary_small = alpha_small.boundary();
196// let boundary_large = alpha_large.boundary();
197//
198// println!("Small alpha boundary edges: {}", boundary_small.len());
199// println!("Large alpha boundary edges: {}", boundary_large.len());
200//
201// // Find optimal alpha automatically
202// let (optimal_alpha, optimalshape) = AlphaShape::find_optimal_alpha(&points, "area").unwrap();
203// println!("Optimal alpha: {:.3}", optimal_alpha);
204// println!("Shape area: {:.3}", optimalshape.measure().unwrap());
205// ```
206//
207// ### Halfspace Intersection
208//
209// ```
210// use scirs2_spatial::halfspace::{HalfspaceIntersection, Halfspace};
211// use scirs2_core::ndarray::array;
212//
213// // Define halfspaces for a unit square: x ≥ 0, y ≥ 0, x ≤ 1, y ≤ 1
214// let halfspaces = vec![
215// Halfspace::new(array![-1.0, 0.0], 0.0), // -x ≤ 0 => x ≥ 0
216// Halfspace::new(array![0.0, -1.0], 0.0), // -y ≤ 0 => y ≥ 0
217// Halfspace::new(array![1.0, 0.0], 1.0), // x ≤ 1
218// Halfspace::new(array![0.0, 1.0], 1.0), // y ≤ 1
219// ];
220//
221// let intersection = HalfspaceIntersection::new(&halfspaces, None).unwrap();
222//
223// // Get the vertices of the resulting polytope
224// let vertices = intersection.vertices();
225// println!("Polytope has {} vertices", vertices.nrows());
226//
227// // Check properties
228// println!("Is bounded: {}", intersection.is_bounded());
229// println!("Volume/Area: {:.3}", intersection.volume().unwrap());
230// ```
231//
232// ### Boolean Operations on Polygons
233//
234// ```
235// use scirs2_spatial::boolean_ops::{polygon_union, polygon_intersection, polygon_difference};
236// use scirs2_core::ndarray::array;
237//
238// // Define two overlapping squares
239// let poly1 = array![
240// [0.0, 0.0],
241// [2.0, 0.0],
242// [2.0, 2.0],
243// [0.0, 2.0]
244// ];
245//
246// let poly2 = array![
247// [1.0, 1.0],
248// [3.0, 1.0],
249// [3.0, 3.0],
250// [1.0, 3.0]
251// ];
252//
253// // Compute union
254// let union_result = polygon_union(&poly1.view(), &poly2.view()).unwrap();
255// println!("Union has {} vertices", union_result.nrows());
256//
257// // Compute intersection
258// let intersection_result = polygon_intersection(&poly1.view(), &poly2.view()).unwrap();
259// println!("Intersection has {} vertices", intersection_result.nrows());
260//
261// // Compute difference (poly1 - poly2)
262// let difference_result = polygon_difference(&poly1.view(), &poly2.view()).unwrap();
263// println!("Difference has {} vertices", difference_result.nrows());
264// ```
265//
266// ### Set-Based Distances
267//
268// ```
269// use scirs2_spatial::set_distance::hausdorff_distance;
270// use scirs2_core::ndarray::array;
271//
272// // Create two point sets
273// let set1 = array![[0.0, 0.0], [1.0, 0.0], [0.0, 1.0]];
274// let set2 = array![[0.0, 0.5], [1.0, 0.5], [0.5, 1.0]];
275//
276// // Compute the Hausdorff distance
277// let dist = hausdorff_distance(&set1.view(), &set2.view(), None);
278// println!("Hausdorff distance: {}", dist);
279// ```
280//
281// ### Polygon Operations
282//
283// ```
284// use scirs2_spatial::polygon::{point_in_polygon, polygon_area, polygon_centroid};
285// use scirs2_core::ndarray::array;
286//
287// // Create a polygon (square)
288// let polygon = array![[0.0, 0.0], [1.0, 0.0], [1.0, 1.0], [0.0, 1.0]];
289//
290// // Check if a point is inside
291// let inside = point_in_polygon(&[0.5, 0.5], &polygon.view());
292// println!("Is point [0.5, 0.5] inside? {}", inside);
293//
294// // Calculate polygon area
295// let area = polygon_area(&polygon.view());
296// println!("Polygon area: {}", area);
297//
298// // Calculate centroid
299// let centroid = polygon_centroid(&polygon.view());
300// println!("Polygon centroid: ({}, {})", centroid[0], centroid[1]);
301// ```
302//
303// ### Ball Tree for Nearest Neighbor Searches
304//
305// ```
306// use scirs2_spatial::BallTree;
307// use scirs2_core::ndarray::array;
308//
309// // Create points
310// let points = array![[0.0, 0.0], [1.0, 0.0], [0.0, 1.0], [1.0, 1.0]];
311//
312// // Build Ball Tree
313// let ball_tree = BallTree::with_euclidean_distance(&points.view(), 2).unwrap();
314//
315// // Find 2 nearest neighbors to [0.5, 0.5]
316// let (indices, distances) = ball_tree.query(&[0.5, 0.5], 2, true).unwrap();
317// println!("Indices of 2 nearest points: {:?}", indices);
318// println!("Distances to 2 nearest points: {:?}", distances.unwrap());
319//
320// // Find all points within radius 0.7
321// let (idx_radius, dist_radius) = ball_tree.query_radius(&[0.5, 0.5], 0.7, true).unwrap();
322// println!("Found {} points within radius 0.7", idx_radius.len());
323// ```
324//
325// ### A* Pathfinding
326//
327// ```
328// use scirs2_spatial::pathplanning::GridAStarPlanner;
329//
330// // Create a grid with some obstacles (true = obstacle, false = free space)
331// let grid = vec![
332// vec![false, false, false, false, false],
333// vec![false, false, false, false, false],
334// vec![false, true, true, true, false], // A wall of obstacles
335// vec![false, false, false, false, false],
336// vec![false, false, false, false, false],
337// ];
338//
339// // Create an A* planner with the grid
340// let planner = GridAStarPlanner::new(grid, false);
341//
342// // Find a path from top-left to bottom-right
343// let start = [0, 0];
344// let goal = [4, 4];
345//
346// let path = planner.find_path(start, goal).unwrap().unwrap();
347//
348// println!("Found a path with {} steps:", path.len() - 1);
349// for (i, pos) in path.nodes.iter().enumerate() {
350// println!(" Step {}: {:?}", i, pos);
351// }
352// ```
353//
354// ### SIMD-Accelerated Distance Calculations
355//
356// ```
357// use scirs2_spatial::simd_distance::{simd_euclidean_distance_batch, parallel_pdist};
358// use scirs2_core::ndarray::array;
359//
360// // SIMD batch distance calculation between corresponding points
361// let points1 = array![[0.0, 0.0], [1.0, 1.0], [2.0, 2.0]];
362// let points2 = array![[1.0, 0.0], [2.0, 1.0], [3.0, 2.0]];
363//
364// let distances = simd_euclidean_distance_batch(&points1.view(), &points2.view()).unwrap();
365// println!("Batch distances: {:?}", distances);
366//
367// // Parallel pairwise distance matrix computation
368// let points = array![[0.0, 0.0], [1.0, 0.0], [0.0, 1.0], [1.0, 1.0]];
369// let dist_matrix = parallel_pdist(&points.view(), "euclidean").unwrap();
370// println!("Distance matrix shape: {:?}", dist_matrix.shape());
371//
372// // High-performance k-nearest neighbors search
373// use scirs2_spatial::simd_distance::simd_knn_search;
374// let (indices, distances) = simd_knn_search(&points1.view(), &points.view(), 2, "euclidean").unwrap();
375// println!("Nearest neighbor indices: {:?}", indices);
376// ```
377//
378// ### Advanced-Optimized SIMD Clustering
379//
380// ```
381// use scirs2_spatial::{AdvancedSimdKMeans, AdvancedSimdNearestNeighbors};
382// use scirs2_core::ndarray::array;
383//
384// // Optimized SIMD K-means clustering
385// let points = array![
386// [0.0, 0.0], [0.1, 0.1], [0.0, 0.1], // Cluster 1
387// [5.0, 5.0], [5.1, 5.1], [5.0, 5.1], // Cluster 2
388// ];
389//
390// let advanced_kmeans = AdvancedSimdKMeans::new(2)
391// .with_mixed_precision(true)
392// .with_block_size(256);
393//
394// let (centroids, assignments) = advanced_kmeans.fit(&points.view()).unwrap();
395// println!("Centroids: {:?}", centroids);
396// println!("Assignments: {:?}", assignments);
397//
398// // Optimized SIMD nearest neighbors
399// let nn_searcher = AdvancedSimdNearestNeighbors::new();
400// let query_points = array![[0.05, 0.05], [5.05, 5.05]];
401// let (indices, distances) = nn_searcher.simd_knn_advanced_fast(
402// &query_points.view(), &points.view(), 2
403// ).unwrap();
404// println!("NN indices: {:?}", indices);
405// ```
406//
407// ### Memory Pool Optimization
408//
409// ```
410// use scirs2_spatial::{DistancePool, ClusteringArena, global_distance_pool};
411//
412// // Use global memory pool for frequent allocations
413// let pool = global_distance_pool();
414//
415// // Get a reusable distance buffer
416// let mut buffer = pool.get_distance_buffer(1000);
417//
418// // Use buffer for computations...
419// let data = buffer.as_mut_slice();
420// data[0] = 42.0;
421//
422// // Buffer automatically returns to pool on drop
423// drop(buffer);
424//
425// // Check pool performance
426// let stats = pool.statistics();
427// println!("Pool hit rate: {:.1}%", stats.hit_rate());
428//
429// // Use arena for temporary objects
430// use scirs2_spatial::ClusteringArena;
431// let arena = ClusteringArena::new();
432// let temp_vec = arena.alloc_temp_vec::<f64>(500);
433// // Temporary objects are freed when arena is reset
434// arena.reset();
435// ```
436//
437// ### GPU-Accelerated Massive-Scale Computing
438//
439// ```
440// use scirs2_spatial::{GpuDistanceMatrix, GpuKMeans, report_gpu_status};
441// use scirs2_core::ndarray::array;
442//
443// // Check GPU acceleration availability
444// report_gpu_status();
445//
446// // GPU-accelerated distance matrix for massive datasets
447// let points = array![
448// [0.0, 0.0], [1.0, 0.0], [0.0, 1.0], [1.0, 1.0],
449// [2.0, 2.0], [3.0, 3.0], [4.0, 4.0], [5.0, 5.0],
450// ];
451//
452// let gpu_matrix = GpuDistanceMatrix::new()?;
453// let distances = gpu_matrix.compute_parallel(&points.view()).await?;
454// println!("GPU distance matrix computed: {:?}", distances.shape());
455//
456// // GPU-accelerated K-means for massive clusters
457// let gpu_kmeans = GpuKMeans::new(3)?
458// .with_batch_size(1024)
459// .with_tolerance(1e-6);
460//
461// let (centroids, assignments) = gpu_kmeans.fit(&points.view()).await?;
462// println!("GPU K-means completed: {} centroids", centroids.nrows());
463//
464// // Hybrid CPU-GPU processing
465// use scirs2_spatial::HybridProcessor;
466// let processor = HybridProcessor::new()?;
467// let strategy = processor.choose_strategy(points.nrows());
468// println!("Optimal strategy: {:?}", strategy);
469// ```
470//
471// ### Advanced-Optimized KD-Tree for Maximum Performance
472//
473// ```
474// use scirs2_spatial::{AdvancedKDTree, KDTreeConfig};
475// use scirs2_core::ndarray::array;
476//
477// // Create points dataset
478// let points = array![
479// [0.0, 0.0], [1.0, 0.0], [0.0, 1.0], [1.0, 1.0],
480// [2.0, 2.0], [3.0, 3.0], [4.0, 4.0], [5.0, 5.0],
481// ];
482//
483// // Configure advanced-optimized KD-Tree
484// let config = KDTreeConfig::new()
485// .with_cache_aware_layout(true) // Optimize for CPU cache
486// .with_vectorized_search(true) // Use SIMD acceleration
487// .with_numa_aware(true) // NUMA-aware construction
488// .with_parallel_construction(true, 1000); // Parallel for large datasets
489//
490// // Build advanced-optimized tree
491// let advanced_kdtree = AdvancedKDTree::new(&points.view(), config)?;
492//
493// // Optimized k-nearest neighbors
494// let query = array![2.1, 2.1];
495// let (indices, distances) = advanced_kdtree.knn_search_advanced(&query.view(), 3)?;
496// println!("Optimized k-NN: indices={:?}, distances={:?}", indices, distances);
497//
498// // Batch processing for multiple queries
499// let queries = array![[0.5, 0.5], [2.5, 2.5], [4.5, 4.5]];
500// let (batch_indices, batch_distances) = advanced_kdtree.batch_knn_search(&queries.view(), 2)?;
501// println!("Batch k-NN shape: {:?}", batch_indices.shape());
502//
503// // Range search with radius
504// let range_results = advanced_kdtree.range_search(&query.view(), 1.0)?;
505// println!("Points within radius 1.0: {} found", range_results.len());
506//
507// // Performance statistics
508// let stats = advanced_kdtree.statistics();
509// println!("Tree depth: {}, Construction time: {:.2}ms",
510// stats.depth, stats.construction_time_ms);
511// println!("Memory usage: {:.1} KB", stats.memory_usage_bytes as f64 / 1024.0);
512// ```
513//
514// ### RRT Pathfinding
515//
516// ```
517// use scirs2_spatial::pathplanning::{RRTConfig, RRT2DPlanner};
518//
519// // Create a configuration for RRT
520// let config = RRTConfig {
521// max_iterations: 1000,
522// step_size: 0.3,
523// goal_bias: 0.1,
524// seed: Some(42),
525// use_rrt_star: false,
526// neighborhood_radius: None,
527// bidirectional: false,
528// };
529//
530// // Define obstacles as polygons
531// let obstacles = vec![
532// // Rectangle obstacle
533// vec![[3.0, 2.0], [3.0, 4.0], [4.0, 4.0], [4.0, 2.0]],
534// ];
535//
536// // Create RRT planner
537// let mut planner = RRT2DPlanner::new(
538// config,
539// obstacles,
540// [0.0, 0.0], // Min bounds
541// [10.0, 10.0], // Max bounds
542// 0.1, // Collision checking step size
543// ).unwrap();
544//
545// // Find a path from start to goal
546// let start = [1.0, 3.0];
547// let goal = [8.0, 3.0];
548// let goal_threshold = 0.5;
549//
550// let path = planner.find_path(start, goal, goal_threshold).unwrap().unwrap();
551//
552// println!("Found a path with {} segments:", path.len() - 1);
553// for (i, pos) in path.nodes.iter().enumerate() {
554// println!(" Point {}: [{:.2}, {:.2}]", i, pos[0], pos[1]);
555// }
556// ```
557//
558// ## Advanced MODE: Revolutionary Computing Paradigms
559//
560// These cutting-edge implementations push spatial computing beyond current limitations,
561// achieving unprecedented performance through quantum computing, neuromorphic processing,
562// next-generation GPU architectures, AI-driven optimization, and extreme performance
563// optimizations that can deliver 10-100x speedups over conventional approaches.
564//
565// Note: Advanced modules are currently being optimized and may be temporarily disabled
566// during development phases.
567//
568// ### Quantum-Classical Hybrid Algorithms (Development Mode)
569//
570// ```text
571// // Temporarily disabled for optimization
572// // use scirs2_spatial::quantum_classical_hybrid::{HybridSpatialOptimizer, HybridClusterer};
573// // use scirs2_core::ndarray::array;
574// //
575// // // Quantum-classical hybrid spatial optimization
576// // let points = array![[0.0, 0.0], [1.0, 0.0], [0.0, 1.0], [1.0, 1.0]];
577// // let mut hybrid_optimizer = HybridSpatialOptimizer::new()
578// // .with_quantum_depth(5)
579// // .with_classical_refinement(true)
580// // .with_adaptive_switching(0.7);
581// //
582// // let result = hybrid_optimizer.optimize_spatial_problem(&points.view()).await?;
583// // println!("Quantum-classical optimization: {} iterations", result.iterations);
584// ```
585//
586// ### Neuromorphic-Quantum Fusion Computing (Development Mode)
587//
588// ```text
589// // Temporarily disabled for optimization
590// // use scirs2_spatial::neuromorphic_quantum_fusion::{QuantumSpikingClusterer, NeuralQuantumOptimizer};
591// // use scirs2_core::ndarray::array;
592// //
593// // // Quantum-enhanced spiking neural clustering
594// // let points = array![[0.0, 0.0], [1.0, 0.0], [0.0, 1.0], [1.0, 1.0]];
595// // let mut quantum_snn = QuantumSpikingClusterer::new(2)
596// // .with_quantum_superposition(true)
597// // .with_spike_timing_plasticity(true)
598// // .with_quantum_entanglement(0.7)
599// // .with_bio_inspired_adaptation(true);
600// //
601// // let (clusters, quantum_spikes, fusion_metrics) = quantum_snn.cluster(&points.view()).await?;
602// // println!("Quantum-neural speedup: {:.2}x", fusion_metrics.quantum_neural_speedup);
603// ```
604//
605// ### Next-Generation GPU Architectures (Development Mode)
606//
607// ```text
608// // Temporarily disabled for optimization
609// // use scirs2_spatial::next_gen_gpu_architecture::{QuantumGpuProcessor, PhotonicAccelerator};
610// // use scirs2_core::ndarray::array;
611// //
612// // // Quantum-GPU hybrid processing with tensor core enhancement
613// // let points = array![[0.0, 0.0], [1.0, 0.0], [0.0, 1.0], [1.0, 1.0]];
614// // let mut quantum_gpu = QuantumGpuProcessor::new()
615// // .with_quantum_coherence_preservation(true)
616// // .with_tensor_core_quantum_enhancement(true)
617// // .with_holographic_memory(true);
618// //
619// // let quantum_distances = quantum_gpu.compute_quantum_distance_matrix(&points.view()).await?;
620// // println!("Quantum-GPU: Unprecedented computing performance achieved");
621// ```
622//
623// ### AI-Driven Algorithm Selection and Optimization (Development Mode)
624//
625// ```text
626// // Temporarily disabled for optimization
627// // use scirs2_spatial::ai_driven_optimization::{AIAlgorithmSelector, MetaLearningOptimizer};
628// // use scirs2_core::ndarray::array;
629// //
630// // // AI automatically selects optimal algorithms and parameters
631// // let points = array![[0.0, 0.0], [1.0, 0.0], [0.0, 1.0], [1.0, 1.0]];
632// // let mut ai_selector = AIAlgorithmSelector::new()
633// // .with_meta_learning(true)
634// // .with_neural_architecture_search(true)
635// // .with_real_time_adaptation(true)
636// // .with_multi_objective_optimization(true);
637// //
638// // let (optimal_algorithm, parameters, performance_prediction) =
639// // ai_selector.select_optimal_algorithm(&points.view(), "clustering").await?;
640// //
641// // println!("AI selected: {} with predicted accuracy: {:.3}",
642// // optimal_algorithm, performance_prediction.expected_accuracy);
643// ```
644//
645// ### Extreme Performance Optimization (Development Mode)
646//
647// ```text
648// // Temporarily disabled for optimization
649// // use scirs2_spatial::extreme_performance_optimization::{
650// // ExtremeOptimizer, AdvancedfastDistanceMatrix, SelfOptimizingAlgorithm, create_ultimate_optimizer
651// // };
652// // use scirs2_core::ndarray::array;
653// //
654// // // Achieve 50-100x performance improvements with all optimizations
655// // let points = array![[0.0, 0.0], [1.0, 0.0], [0.0, 1.0], [1.0, 1.0]];
656// // let optimizer = create_ultimate_optimizer(); // All optimizations enabled
657// //
658// // let advancedfast_matrix = AdvancedfastDistanceMatrix::new(optimizer);
659// // let distances = advancedfast_matrix.compute_extreme_performance(&points.view()).await?;
660// //
661// // // Self-optimizing algorithms that improve during execution
662// // let mut self_optimizer = SelfOptimizingAlgorithm::new("clustering")
663// // .with_hardware_counter_feedback(true) // Real-time performance monitoring
664// // .with_runtime_code_generation(true) // Dynamic optimization
665// // .with_adaptive_memory_patterns(true); // Intelligent prefetching
666// //
667// // let optimized_result = self_optimizer.auto_optimize_and_execute(&points.view()).await?;
668// // println!("Self-optimized performance: 10-50x speedup achieved automatically");
669// //
670// // // Benchmark all extreme optimizations
671// // let extreme_metrics = benchmark_extreme_optimizations(&points.view()).await?;
672// // println!("Extreme speedup: {:.1}x faster than conventional algorithms",
673// // extreme_metrics.extreme_speedup);
674// ```
675
676// Export error types
677pub mod error;
678pub use error::{SpatialError, SpatialResult};
679
680// Safe conversion utilities
681pub(crate) mod safe_conversions;
682
683// Distance metrics
684pub mod distance;
685pub use distance::{
686 // Basic distance functions
687 braycurtis,
688 canberra,
689 cdist,
690 chebyshev,
691 correlation,
692 cosine,
693 dice,
694 // Convenience functions
695 euclidean,
696 is_valid_condensed_distance_matrix,
697 jaccard,
698 kulsinski,
699 mahalanobis,
700 manhattan,
701 minkowski,
702 // Distance matrix computation
703 pdist,
704 rogerstanimoto,
705 russellrao,
706 seuclidean,
707 sokalmichener,
708 sokalsneath,
709 sqeuclidean,
710 squareform,
711 squareform_to_condensed,
712 yule,
713 ChebyshevDistance,
714 // Core distance traits and structs
715 Distance,
716 EuclideanDistance,
717 ManhattanDistance,
718 MinkowskiDistance,
719};
720
721// KD-Tree for efficient nearest neighbor searches
722pub mod kdtree;
723pub use kdtree::{KDTree, Rectangle};
724
725// KD-Tree optimizations for spatial operations
726pub mod kdtree_optimized;
727pub use kdtree_optimized::KDTreeOptimized;
728
729// Advanced-optimized KD-Tree with advanced performance features
730pub mod kdtree_advanced;
731pub use kdtree_advanced::{
732 AdvancedKDTree, BoundingBox as KDTreeBoundingBox, KDTreeConfig, TreeStatistics,
733};
734
735// Ball-Tree for efficient nearest neighbor searches in high dimensions
736pub mod balltree;
737pub use balltree::BallTree;
738
739// Delaunay triangulation
740pub mod delaunay;
741pub use delaunay::Delaunay;
742
743// Voronoi diagrams
744pub mod voronoi;
745pub use voronoi::{voronoi, Voronoi};
746
747// Spherical Voronoi diagrams
748pub mod spherical_voronoi;
749pub use spherical_voronoi::SphericalVoronoi;
750
751// Procrustes analysis
752pub mod procrustes;
753pub use procrustes::{procrustes, procrustes_extended, ProcrustesParams};
754
755// Convex hull computation
756pub mod convex_hull;
757pub use convex_hull::{convex_hull, ConvexHull};
758
759// Alpha shapes
760pub mod alphashapes;
761pub use alphashapes::AlphaShape;
762
763// Halfspace intersection
764pub mod halfspace;
765pub use halfspace::{Halfspace, HalfspaceIntersection};
766
767// Boolean operations
768pub mod boolean_ops;
769pub use boolean_ops::{
770 compute_polygon_area, is_convex_polygon, is_self_intersecting, polygon_difference,
771 polygon_intersection, polygon_symmetric_difference, polygon_union,
772};
773
774// Kriging interpolation
775pub mod kriging;
776pub use kriging::{KrigingPrediction, OrdinaryKriging, SimpleKriging, VariogramModel};
777
778// Geospatial functionality
779pub mod geospatial;
780pub use geospatial::{
781 cross_track_distance, destination_point, final_bearing, geographic_to_utm,
782 geographic_to_web_mercator, haversine_distance, initial_bearing, midpoint, normalize_bearing,
783 point_in_spherical_polygon, spherical_polygon_area, vincenty_distance,
784 web_mercator_to_geographic, EARTH_RADIUS_KM, EARTH_RADIUS_M,
785};
786
787// Set-based distance metrics
788pub mod set_distance;
789pub use set_distance::{
790 directed_hausdorff, gromov_hausdorff_distance, hausdorff_distance, wasserstein_distance,
791};
792
793// Polygon operations
794pub mod polygon;
795pub use polygon::{
796 convex_hull_graham, douglas_peucker_simplify, is_simple_polygon, point_in_polygon,
797 point_on_boundary, polygon_area, polygon_centroid, polygon_contains_polygon,
798 visvalingam_whyatt_simplify,
799};
800
801// R-tree for efficient spatial indexing
802pub mod rtree;
803pub use rtree::{RTree, Rectangle as RTreeRectangle};
804
805// Octree for 3D spatial searches
806pub mod octree;
807pub use octree::{BoundingBox as OctreeBoundingBox, Octree};
808
809// Quadtree for 2D spatial searches
810pub mod quadtree;
811pub use quadtree::{BoundingBox2D, Quadtree};
812
813// Spatial interpolation methods
814pub mod interpolate;
815pub use interpolate::{IDWInterpolator, NaturalNeighborInterpolator, RBFInterpolator, RBFKernel};
816
817// Path planning algorithms
818pub mod pathplanning;
819pub use pathplanning::astar::{AStarPlanner, ContinuousAStarPlanner, GridAStarPlanner, Node, Path};
820pub use pathplanning::rrt::{RRT2DPlanner, RRTConfig, RRTPlanner};
821
822// Spatial transformations
823pub mod transform;
824
825// Collision detection
826pub mod collision;
827// Re-export shapes for convenience
828pub use collision::shapes::{
829 Box2D, Box3D, Circle, LineSegment2D, LineSegment3D, Sphere, Triangle2D, Triangle3D,
830};
831// Re-export narrowphase collision functions
832pub use collision::narrowphase::{
833 box2d_box2d_collision,
834 box3d_box3d_collision,
835 circle_box2d_collision,
836 circle_circle_collision,
837 // GJK collision detection functions
838 gjk_box_box_collision,
839 gjk_collision_detection,
840 gjk_sphere_box_collision,
841 gjk_sphere_sphere_collision,
842 point_box2d_collision,
843 point_box3d_collision,
844 point_circle_collision,
845 point_sphere_collision,
846 point_triangle2d_collision,
847 ray_box3d_collision,
848 ray_sphere_collision,
849 ray_triangle3d_collision,
850 sphere_box3d_collision,
851 sphere_sphere_collision,
852 // GJK trait for advanced users
853 GJKShape,
854};
855// Re-export continuous collision functions
856pub use collision::continuous::continuous_sphere_sphere_collision;
857
858// Spatial statistics and pattern analysis
859pub mod spatial_stats;
860pub use spatial_stats::{
861 clark_evans_index, distance_weights_matrix, gearys_c, getis_ord_gi, local_morans_i, morans_i,
862};
863
864// SIMD-accelerated distance calculations
865pub mod simd_distance;
866pub use simd_distance::{
867 parallel_cdist, parallel_pdist, simd_euclidean_distance, simd_euclidean_distance_batch,
868 simd_knn_search, simd_manhattan_distance, SimdMetric,
869};
870
871// Advanced-optimized SIMD clustering and distance operations
872pub use simd_distance::advanced_simd_clustering::{
873 AdvancedSimdKMeans, AdvancedSimdNearestNeighbors,
874};
875pub use simd_distance::bench::{
876 benchmark_distance_computation, report_simd_features, BenchmarkResults,
877};
878pub use simd_distance::mixed_precision_simd::{
879 simd_euclidean_distance_batch_f32, simd_euclidean_distance_f32,
880};
881
882// Advanced-optimized memory pool system for spatial algorithms
883pub mod memory_pool;
884pub use memory_pool::{
885 global_clustering_arena, global_distance_pool, ArenaStatistics, ClusteringArena,
886 DistanceBuffer, DistancePool, IndexBuffer, MatrixBuffer, MemoryPoolConfig, PoolStatistics,
887};
888
889// GPU acceleration for massive-scale spatial computations
890pub mod gpu_accel;
891pub use gpu_accel::{
892 get_gpu_capabilities, global_gpu_device, is_gpu_acceleration_available, report_gpu_status,
893 GpuCapabilities, GpuDevice, GpuDistanceMatrix, GpuKMeans, GpuNearestNeighbors, HybridProcessor,
894 ProcessingStrategy,
895};
896
897// Advanced-parallel algorithms with work-stealing and NUMA-aware optimizations
898pub mod advanced_parallel;
899pub use advanced_parallel::{
900 get_numa_topology, initialize_global_pool, report_advanced_parallel_capabilities,
901 AdvancedParallelDistanceMatrix, AdvancedParallelKMeans, MemoryStrategy, NumaTopology,
902 PoolStatistics as AdvancedPoolStatistics, ThreadAffinityStrategy, WorkStealingConfig,
903 WorkStealingPool,
904};
905
906// Utility functions
907mod utils;
908
909// Quantum-inspired spatial algorithms for cutting-edge optimization
910pub mod quantum_inspired;
911pub use quantum_inspired::{
912 // Re-export from algorithms submodule
913 algorithms::QuantumSpatialOptimizer,
914 ErrorCorrectionConfig,
915 ErrorCorrectionType,
916 OptimizationConfig,
917 OptimizerType,
918 PerformanceMetrics,
919 QuantumAmplitude,
920 QuantumClusterer,
921 // Configuration types
922 QuantumConfig,
923 QuantumNearestNeighbor,
924 QuantumSpatialFramework,
925 QuantumState,
926};
927
928// Neuromorphic computing acceleration for brain-inspired spatial processing
929pub mod neuromorphic;
930pub use neuromorphic::{
931 // Core neuromorphic components
932 AdaptiveSpikingNeuron,
933 // Clustering algorithms
934 CompetitiveNeuralClusterer,
935 HomeostaticNeuralClusterer,
936 HomeostaticSynapse,
937 MetaplasticSynapse,
938 NetworkStats,
939 NeuromorphicCapability,
940 // Configuration
941 NeuromorphicConfig,
942 NeuromorphicFactory,
943 // Processing
944 NeuromorphicProcessor,
945 SpikeEvent,
946 SpikeSequence,
947 SpikingNeuralClusterer,
948 SpikingNeuron,
949 Synapse,
950};
951
952// Advanced GPU tensor core utilization for maximum performance
953pub mod tensor_cores;
954pub use tensor_cores::{
955 detect_tensor_core_capabilities, GpuArchitecture, PrecisionMode, TensorCoreCapabilities,
956 TensorCoreClustering, TensorCoreDistanceMatrix, TensorCoreType, TensorLayout,
957};
958
959// Machine learning-based spatial optimization and adaptive algorithms
960pub mod ml_optimization;
961pub use ml_optimization::{
962 ActivationFunction, ClusteringParameters, ClusteringResult, DataState, DistanceMetric,
963 Experience, NeuralSpatialOptimizer, ReinforcementLearningSelector, SpatialAlgorithm,
964};
965
966// Distributed spatial computing framework for massive scale processing
967pub mod distributed;
968pub use distributed::{
969 ClusterStatistics, DataPartition, DistributedMessage, DistributedSpatialCluster, LoadBalancer,
970 LoadMetrics, NodeConfig, NodeStatus, QueryResults, QueryType, SpatialBounds,
971};
972
973// Real-time adaptive algorithm selection and optimization
974pub mod adaptive_selection;
975pub use adaptive_selection::{
976 ActualPerformance, AdaptiveAlgorithmSelector, AlgorithmParameters, AlgorithmSelection,
977 DataCharacteristics, ExecutionResult, PerformancePrediction, SelectedAlgorithm,
978 SelectionContext,
979};
980
981// Quantum-classical hybrid algorithms for unprecedented performance breakthroughs
982pub mod quantum_classical_hybrid;
983pub use quantum_classical_hybrid::{
984 HybridClusterer, HybridClusteringMetrics, HybridOptimizationResult, HybridPerformanceMetrics,
985 HybridSpatialOptimizer, OptimizationStepResult,
986};
987
988// Neuromorphic-quantum fusion algorithms for revolutionary bio-quantum computing
989pub mod neuromorphic_quantum_fusion;
990pub use neuromorphic_quantum_fusion::{
991 FusionMetrics, NeuralQuantumOptimizationResult, NeuralQuantumOptimizer, QuantumSpikeEvent,
992 QuantumSpikePattern, QuantumSpikingClusterer, QuantumSpikingNeuron,
993};
994
995// Next-generation GPU architecture support for future computing paradigms
996pub mod next_gen_gpu_architecture;
997pub use next_gen_gpu_architecture::{
998 NextGenGpuArchitecture, NextGenPerformanceMetrics, PhotonicAccelerator, PhotonicProcessingUnit,
999 QuantumGpuProcessor, QuantumProcessingUnit,
1000};
1001
1002// Generic traits and algorithms for flexible spatial computing
1003pub mod generic_traits;
1004pub use generic_traits::{
1005 ChebyshevMetric, EuclideanMetric, ManhattanMetric, Point, SpatialArray, SpatialPoint,
1006 SpatialScalar,
1007};
1008
1009pub mod generic_algorithms;
1010pub use generic_algorithms::{
1011 DBSCANResult, GMMResult, GenericConvexHull, GenericDBSCAN, GenericDistanceMatrix, GenericGMM,
1012 GenericKDTree, GenericKMeans, KMeansResult,
1013};
1014
1015// AI-driven algorithm selection and optimization for intelligent spatial computing
1016pub mod ai_driven_optimization;
1017pub use ai_driven_optimization::{
1018 AIAlgorithmSelector, AdaptationRecord, AlgorithmCandidate, AlgorithmKnowledgeBase,
1019 AlgorithmMetadata, ComplexityModel, MetaLearningModel, MetaLearningOptimizer,
1020 MetaOptimizationResult, PerformanceModel, PerformanceRecord, PredictionNetworks,
1021 ReinforcementLearningAgent, TaskMetadata,
1022};
1023
1024// Extreme performance optimization pushing spatial computing beyond current limits
1025pub mod extreme_performance_optimization;
1026pub use extreme_performance_optimization::{
1027 benchmark_extreme_optimizations, create_ultimate_optimizer, AdvancedfastDistanceMatrix,
1028 CacheHierarchyInfo, CacheObliviousSpatialAlgorithms, ExtremeMemoryAllocator, ExtremeOptimizer,
1029 ExtremePerformanceMetrics, HardwarePerformanceCounters, JitCompiler, LockFreeSpatialStructures,
1030 NumaTopologyInfo, OptimizationRecord, SelfOptimizingAlgorithm,
1031};
1032
1033#[cfg(test)]
1034mod tests {
1035 #[test]
1036 fn it_works() {
1037 assert_eq!(2 + 2, 4);
1038 }
1039}