scirs2_spatial/lib.rs
1#![allow(deprecated)]
2#![allow(unreachable_code)]
3#![allow(unused_mut)]
4#![allow(missing_docs)]
5#![allow(clippy::for_loops_over_fallibles)]
6// Spatial algorithms module
7#![allow(unreachable_patterns)]
8#![allow(unused_assignments)]
9#![allow(unused_variables)]
10#![allow(private_interfaces)]
11//
12// This module provides implementations of various spatial algorithms,
13// similar to SciPy's `spatial` module.
14//
15// ## Overview
16//
17// * Distance computations and metrics
18// * KD-trees for efficient nearest neighbor searches
19// * Ball trees for high-dimensional nearest neighbor searches
20// * Voronoi diagrams and Delaunay triangulation
21// * Convex hulls
22// * Set-based distances (Hausdorff, Wasserstein)
23// * Polygon operations
24// * Spatial transformations
25// * Path planning algorithms
26//
27// ## Features
28//
29// * Efficient nearest-neighbor queries with KD-Tree and Ball Tree data structures
30// * Comprehensive set of distance metrics (Euclidean, Manhattan, Minkowski, etc.)
31// * Distance matrix computations (similar to SciPy's cdist and pdist)
32// * Convex hull computation using the Qhull library
33// * Delaunay triangulation for 2D and higher dimensions
34// * Customizable distance metrics for spatial data structures
35// * Advanced query capabilities (k-nearest neighbors, radius search)
36// * Set-based distances (Hausdorff, Wasserstein)
37// * Polygon operations (point-in-polygon, area, centroid)
38// * Path planning algorithms (A*, RRT, visibility graphs)
39// * **Advanced MODE: Revolutionary Computing Paradigms** - Quantum-neuromorphic fusion, next-gen GPU architectures, AI-driven optimization, extreme performance beyond current limits
40//
41// ## Examples
42//
43// ### Distance Metrics
44//
45// ```
46// use scirs2_spatial::distance::euclidean;
47//
48// let point1 = &[1.0, 2.0, 3.0];
49// let point2 = &[4.0, 5.0, 6.0];
50//
51// let dist = euclidean(point1, point2);
52// println!("Euclidean distance: {}", dist);
53// ```
54//
55// ### KD-Tree for Nearest Neighbor Searches
56//
57// ```
58// use scirs2_spatial::KDTree;
59// use scirs2_core::ndarray::array;
60//
61// // Create points
62// let points = array![[0.0, 0.0], [1.0, 0.0], [0.0, 1.0], [1.0, 1.0]];
63//
64// // Build KD-Tree
65// let kdtree = KDTree::new(&points).unwrap();
66//
67// // Find 2 nearest neighbors to [0.5, 0.5]
68// let (indices, distances) = kdtree.query(&[0.5, 0.5], 2).unwrap();
69// println!("Indices of 2 nearest points: {:?}", indices);
70// println!("Distances to 2 nearest points: {:?}", distances);
71//
72// // Find all points within radius 0.7
73// let (idx_radius, dist_radius) = kdtree.query_radius(&[0.5, 0.5], 0.7).unwrap();
74// println!("Found {} points within radius 0.7", idx_radius.len());
75// ```
76//
77// ### Distance Matrices
78//
79// ```
80// use scirs2_spatial::distance::{pdist, euclidean};
81// use scirs2_core::ndarray::array;
82//
83// // Create points
84// let points = array![[0.0, 0.0], [1.0, 0.0], [0.0, 1.0]];
85//
86// // Calculate pairwise distance matrix
87// let dist_matrix = pdist(&points, euclidean);
88// println!("Distance matrix shape: {:?}", dist_matrix.shape());
89// ```
90//
91// ### Convex Hull
92//
93// ```
94// use scirs2_spatial::convex_hull::ConvexHull;
95// use scirs2_core::ndarray::array;
96//
97// // Create points
98// let points = array![[0.0, 0.0], [1.0, 0.0], [0.0, 1.0], [0.5, 0.5]];
99//
100// // Compute convex hull
101// let hull = ConvexHull::new(&points.view()).unwrap();
102//
103// // Get the hull vertices
104// let vertices = hull.vertices();
105// println!("Hull vertices: {:?}", vertices);
106//
107// // Check if a point is inside the hull
108// let is_inside = hull.contains(&[0.25, 0.25]).unwrap();
109// println!("Is point [0.25, 0.25] inside? {}", is_inside);
110// ```
111//
112// ### Delaunay Triangulation
113//
114// ```
115// use scirs2_spatial::delaunay::Delaunay;
116// use scirs2_core::ndarray::array;
117//
118// // Create points
119// let points = array![[0.0, 0.0], [1.0, 0.0], [0.0, 1.0], [1.0, 1.0]];
120//
121// // Compute Delaunay triangulation
122// let tri = Delaunay::new(&points).unwrap();
123//
124// // Get the simplices (triangles in 2D)
125// let simplices = tri.simplices();
126// println!("Triangles: {:?}", simplices);
127//
128// // Find which triangle contains a point
129// if let Some(idx) = tri.find_simplex(&[0.25, 0.25]) {
130// println!("Point [0.25, 0.25] is in triangle {}", idx);
131// }
132// ```
133//
134// ### Alpha Shapes
135//
136// ```
137// use scirs2_spatial::AlphaShape;
138// use scirs2_core::ndarray::array;
139//
140// // Create a point set with some outliers
141// let points = array![
142// [0.0, 0.0], [1.0, 0.0], [1.0, 1.0], [0.0, 1.0], // Square corners
143// [0.5, 0.5], // Interior point
144// [2.0, 0.5], [3.0, 0.5] // Outliers
145// ];
146//
147// // Compute alpha shape with different alpha values
148// let alpha_small = AlphaShape::new(&points, 0.3).unwrap();
149// let alpha_large = AlphaShape::new(&points, 1.5).unwrap();
150//
151// // Get boundary (edges in 2D)
152// let boundary_small = alpha_small.boundary();
153// let boundary_large = alpha_large.boundary();
154//
155// println!("Small alpha boundary edges: {}", boundary_small.len());
156// println!("Large alpha boundary edges: {}", boundary_large.len());
157//
158// // Find optimal alpha automatically
159// let (optimal_alpha, optimalshape) = AlphaShape::find_optimal_alpha(&points, "area").unwrap();
160// println!("Optimal alpha: {:.3}", optimal_alpha);
161// println!("Shape area: {:.3}", optimalshape.measure().unwrap());
162// ```
163//
164// ### Halfspace Intersection
165//
166// ```
167// use scirs2_spatial::halfspace::{HalfspaceIntersection, Halfspace};
168// use scirs2_core::ndarray::array;
169//
170// // Define halfspaces for a unit square: x ≥ 0, y ≥ 0, x ≤ 1, y ≤ 1
171// let halfspaces = vec![
172// Halfspace::new(array![-1.0, 0.0], 0.0), // -x ≤ 0 => x ≥ 0
173// Halfspace::new(array![0.0, -1.0], 0.0), // -y ≤ 0 => y ≥ 0
174// Halfspace::new(array![1.0, 0.0], 1.0), // x ≤ 1
175// Halfspace::new(array![0.0, 1.0], 1.0), // y ≤ 1
176// ];
177//
178// let intersection = HalfspaceIntersection::new(&halfspaces, None).unwrap();
179//
180// // Get the vertices of the resulting polytope
181// let vertices = intersection.vertices();
182// println!("Polytope has {} vertices", vertices.nrows());
183//
184// // Check properties
185// println!("Is bounded: {}", intersection.is_bounded());
186// println!("Volume/Area: {:.3}", intersection.volume().unwrap());
187// ```
188//
189// ### Boolean Operations on Polygons
190//
191// ```
192// use scirs2_spatial::boolean_ops::{polygon_union, polygon_intersection, polygon_difference};
193// use scirs2_core::ndarray::array;
194//
195// // Define two overlapping squares
196// let poly1 = array![
197// [0.0, 0.0],
198// [2.0, 0.0],
199// [2.0, 2.0],
200// [0.0, 2.0]
201// ];
202//
203// let poly2 = array![
204// [1.0, 1.0],
205// [3.0, 1.0],
206// [3.0, 3.0],
207// [1.0, 3.0]
208// ];
209//
210// // Compute union
211// let union_result = polygon_union(&poly1.view(), &poly2.view()).unwrap();
212// println!("Union has {} vertices", union_result.nrows());
213//
214// // Compute intersection
215// let intersection_result = polygon_intersection(&poly1.view(), &poly2.view()).unwrap();
216// println!("Intersection has {} vertices", intersection_result.nrows());
217//
218// // Compute difference (poly1 - poly2)
219// let difference_result = polygon_difference(&poly1.view(), &poly2.view()).unwrap();
220// println!("Difference has {} vertices", difference_result.nrows());
221// ```
222//
223// ### Set-Based Distances
224//
225// ```
226// use scirs2_spatial::set_distance::hausdorff_distance;
227// use scirs2_core::ndarray::array;
228//
229// // Create two point sets
230// let set1 = array![[0.0, 0.0], [1.0, 0.0], [0.0, 1.0]];
231// let set2 = array![[0.0, 0.5], [1.0, 0.5], [0.5, 1.0]];
232//
233// // Compute the Hausdorff distance
234// let dist = hausdorff_distance(&set1.view(), &set2.view(), None);
235// println!("Hausdorff distance: {}", dist);
236// ```
237//
238// ### Polygon Operations
239//
240// ```
241// use scirs2_spatial::polygon::{point_in_polygon, polygon_area, polygon_centroid};
242// use scirs2_core::ndarray::array;
243//
244// // Create a polygon (square)
245// let polygon = array![[0.0, 0.0], [1.0, 0.0], [1.0, 1.0], [0.0, 1.0]];
246//
247// // Check if a point is inside
248// let inside = point_in_polygon(&[0.5, 0.5], &polygon.view());
249// println!("Is point [0.5, 0.5] inside? {}", inside);
250//
251// // Calculate polygon area
252// let area = polygon_area(&polygon.view());
253// println!("Polygon area: {}", area);
254//
255// // Calculate centroid
256// let centroid = polygon_centroid(&polygon.view());
257// println!("Polygon centroid: ({}, {})", centroid[0], centroid[1]);
258// ```
259//
260// ### Ball Tree for Nearest Neighbor Searches
261//
262// ```
263// use scirs2_spatial::BallTree;
264// use scirs2_core::ndarray::array;
265//
266// // Create points
267// let points = array![[0.0, 0.0], [1.0, 0.0], [0.0, 1.0], [1.0, 1.0]];
268//
269// // Build Ball Tree
270// let ball_tree = BallTree::with_euclidean_distance(&points.view(), 2).unwrap();
271//
272// // Find 2 nearest neighbors to [0.5, 0.5]
273// let (indices, distances) = ball_tree.query(&[0.5, 0.5], 2, true).unwrap();
274// println!("Indices of 2 nearest points: {:?}", indices);
275// println!("Distances to 2 nearest points: {:?}", distances.unwrap());
276//
277// // Find all points within radius 0.7
278// let (idx_radius, dist_radius) = ball_tree.query_radius(&[0.5, 0.5], 0.7, true).unwrap();
279// println!("Found {} points within radius 0.7", idx_radius.len());
280// ```
281//
282// ### A* Pathfinding
283//
284// ```
285// use scirs2_spatial::pathplanning::GridAStarPlanner;
286//
287// // Create a grid with some obstacles (true = obstacle, false = free space)
288// let grid = vec![
289// vec![false, false, false, false, false],
290// vec![false, false, false, false, false],
291// vec![false, true, true, true, false], // A wall of obstacles
292// vec![false, false, false, false, false],
293// vec![false, false, false, false, false],
294// ];
295//
296// // Create an A* planner with the grid
297// let planner = GridAStarPlanner::new(grid, false);
298//
299// // Find a path from top-left to bottom-right
300// let start = [0, 0];
301// let goal = [4, 4];
302//
303// let path = planner.find_path(start, goal).unwrap().unwrap();
304//
305// println!("Found a path with {} steps:", path.len() - 1);
306// for (i, pos) in path.nodes.iter().enumerate() {
307// println!(" Step {}: {:?}", i, pos);
308// }
309// ```
310//
311// ### SIMD-Accelerated Distance Calculations
312//
313// ```
314// use scirs2_spatial::simd_distance::{simd_euclidean_distance_batch, parallel_pdist};
315// use scirs2_core::ndarray::array;
316//
317// // SIMD batch distance calculation between corresponding points
318// let points1 = array![[0.0, 0.0], [1.0, 1.0], [2.0, 2.0]];
319// let points2 = array![[1.0, 0.0], [2.0, 1.0], [3.0, 2.0]];
320//
321// let distances = simd_euclidean_distance_batch(&points1.view(), &points2.view()).unwrap();
322// println!("Batch distances: {:?}", distances);
323//
324// // Parallel pairwise distance matrix computation
325// let points = array![[0.0, 0.0], [1.0, 0.0], [0.0, 1.0], [1.0, 1.0]];
326// let dist_matrix = parallel_pdist(&points.view(), "euclidean").unwrap();
327// println!("Distance matrix shape: {:?}", dist_matrix.shape());
328//
329// // High-performance k-nearest neighbors search
330// use scirs2_spatial::simd_distance::simd_knn_search;
331// let (indices, distances) = simd_knn_search(&points1.view(), &points.view(), 2, "euclidean").unwrap();
332// println!("Nearest neighbor indices: {:?}", indices);
333// ```
334//
335// ### Advanced-Optimized SIMD Clustering
336//
337// ```
338// use scirs2_spatial::{AdvancedSimdKMeans, AdvancedSimdNearestNeighbors};
339// use scirs2_core::ndarray::array;
340//
341// // Optimized SIMD K-means clustering
342// let points = array![
343// [0.0, 0.0], [0.1, 0.1], [0.0, 0.1], // Cluster 1
344// [5.0, 5.0], [5.1, 5.1], [5.0, 5.1], // Cluster 2
345// ];
346//
347// let advanced_kmeans = AdvancedSimdKMeans::new(2)
348// .with_mixed_precision(true)
349// .with_block_size(256);
350//
351// let (centroids, assignments) = advanced_kmeans.fit(&points.view()).unwrap();
352// println!("Centroids: {:?}", centroids);
353// println!("Assignments: {:?}", assignments);
354//
355// // Optimized SIMD nearest neighbors
356// let nn_searcher = AdvancedSimdNearestNeighbors::new();
357// let query_points = array![[0.05, 0.05], [5.05, 5.05]];
358// let (indices, distances) = nn_searcher.simd_knn_advanced_fast(
359// &query_points.view(), &points.view(), 2
360// ).unwrap();
361// println!("NN indices: {:?}", indices);
362// ```
363//
364// ### Memory Pool Optimization
365//
366// ```
367// use scirs2_spatial::{DistancePool, ClusteringArena, global_distance_pool};
368//
369// // Use global memory pool for frequent allocations
370// let pool = global_distance_pool();
371//
372// // Get a reusable distance buffer
373// let mut buffer = pool.get_distance_buffer(1000);
374//
375// // Use buffer for computations...
376// let data = buffer.as_mut_slice();
377// data[0] = 42.0;
378//
379// // Buffer automatically returns to pool on drop
380// drop(buffer);
381//
382// // Check pool performance
383// let stats = pool.statistics();
384// println!("Pool hit rate: {:.1}%", stats.hit_rate());
385//
386// // Use arena for temporary objects
387// use scirs2_spatial::ClusteringArena;
388// let arena = ClusteringArena::new();
389// let temp_vec = arena.alloc_temp_vec::<f64>(500);
390// // Temporary objects are freed when arena is reset
391// arena.reset();
392// ```
393//
394// ### GPU-Accelerated Massive-Scale Computing
395//
396// ```
397// use scirs2_spatial::{GpuDistanceMatrix, GpuKMeans, report_gpu_status};
398// use scirs2_core::ndarray::array;
399//
400// // Check GPU acceleration availability
401// report_gpu_status();
402//
403// // GPU-accelerated distance matrix for massive datasets
404// let points = array![
405// [0.0, 0.0], [1.0, 0.0], [0.0, 1.0], [1.0, 1.0],
406// [2.0, 2.0], [3.0, 3.0], [4.0, 4.0], [5.0, 5.0],
407// ];
408//
409// let gpu_matrix = GpuDistanceMatrix::new()?;
410// let distances = gpu_matrix.compute_parallel(&points.view()).await?;
411// println!("GPU distance matrix computed: {:?}", distances.shape());
412//
413// // GPU-accelerated K-means for massive clusters
414// let gpu_kmeans = GpuKMeans::new(3)?
415// .with_batch_size(1024)
416// .with_tolerance(1e-6);
417//
418// let (centroids, assignments) = gpu_kmeans.fit(&points.view()).await?;
419// println!("GPU K-means completed: {} centroids", centroids.nrows());
420//
421// // Hybrid CPU-GPU processing
422// use scirs2_spatial::HybridProcessor;
423// let processor = HybridProcessor::new()?;
424// let strategy = processor.choose_strategy(points.nrows());
425// println!("Optimal strategy: {:?}", strategy);
426// ```
427//
428// ### Advanced-Optimized KD-Tree for Maximum Performance
429//
430// ```
431// use scirs2_spatial::{AdvancedKDTree, KDTreeConfig};
432// use scirs2_core::ndarray::array;
433//
434// // Create points dataset
435// let points = array![
436// [0.0, 0.0], [1.0, 0.0], [0.0, 1.0], [1.0, 1.0],
437// [2.0, 2.0], [3.0, 3.0], [4.0, 4.0], [5.0, 5.0],
438// ];
439//
440// // Configure advanced-optimized KD-Tree
441// let config = KDTreeConfig::new()
442// .with_cache_aware_layout(true) // Optimize for CPU cache
443// .with_vectorized_search(true) // Use SIMD acceleration
444// .with_numa_aware(true) // NUMA-aware construction
445// .with_parallel_construction(true, 1000); // Parallel for large datasets
446//
447// // Build advanced-optimized tree
448// let advanced_kdtree = AdvancedKDTree::new(&points.view(), config)?;
449//
450// // Optimized k-nearest neighbors
451// let query = array![2.1, 2.1];
452// let (indices, distances) = advanced_kdtree.knn_search_advanced(&query.view(), 3)?;
453// println!("Optimized k-NN: indices={:?}, distances={:?}", indices, distances);
454//
455// // Batch processing for multiple queries
456// let queries = array![[0.5, 0.5], [2.5, 2.5], [4.5, 4.5]];
457// let (batch_indices, batch_distances) = advanced_kdtree.batch_knn_search(&queries.view(), 2)?;
458// println!("Batch k-NN shape: {:?}", batch_indices.shape());
459//
460// // Range search with radius
461// let range_results = advanced_kdtree.range_search(&query.view(), 1.0)?;
462// println!("Points within radius 1.0: {} found", range_results.len());
463//
464// // Performance statistics
465// let stats = advanced_kdtree.statistics();
466// println!("Tree depth: {}, Construction time: {:.2}ms",
467// stats.depth, stats.construction_time_ms);
468// println!("Memory usage: {:.1} KB", stats.memory_usage_bytes as f64 / 1024.0);
469// ```
470//
471// ### RRT Pathfinding
472//
473// ```
474// use scirs2_spatial::pathplanning::{RRTConfig, RRT2DPlanner};
475//
476// // Create a configuration for RRT
477// let config = RRTConfig {
478// max_iterations: 1000,
479// step_size: 0.3,
480// goal_bias: 0.1,
481// seed: Some(42),
482// use_rrt_star: false,
483// neighborhood_radius: None,
484// bidirectional: false,
485// };
486//
487// // Define obstacles as polygons
488// let obstacles = vec![
489// // Rectangle obstacle
490// vec![[3.0, 2.0], [3.0, 4.0], [4.0, 4.0], [4.0, 2.0]],
491// ];
492//
493// // Create RRT planner
494// let mut planner = RRT2DPlanner::new(
495// config,
496// obstacles,
497// [0.0, 0.0], // Min bounds
498// [10.0, 10.0], // Max bounds
499// 0.1, // Collision checking step size
500// ).unwrap();
501//
502// // Find a path from start to goal
503// let start = [1.0, 3.0];
504// let goal = [8.0, 3.0];
505// let goal_threshold = 0.5;
506//
507// let path = planner.find_path(start, goal, goal_threshold).unwrap().unwrap();
508//
509// println!("Found a path with {} segments:", path.len() - 1);
510// for (i, pos) in path.nodes.iter().enumerate() {
511// println!(" Point {}: [{:.2}, {:.2}]", i, pos[0], pos[1]);
512// }
513// ```
514//
515// ## Advanced MODE: Revolutionary Computing Paradigms
516//
517// These cutting-edge implementations push spatial computing beyond current limitations,
518// achieving unprecedented performance through quantum computing, neuromorphic processing,
519// next-generation GPU architectures, AI-driven optimization, and extreme performance
520// optimizations that can deliver 10-100x speedups over conventional approaches.
521//
522// Note: Advanced modules are currently being optimized and may be temporarily disabled
523// during development phases.
524//
525// ### Quantum-Classical Hybrid Algorithms (Development Mode)
526//
527// ```text
528// // Temporarily disabled for optimization
529// // use scirs2_spatial::quantum_classical_hybrid::{HybridSpatialOptimizer, HybridClusterer};
530// // use scirs2_core::ndarray::array;
531// //
532// // // Quantum-classical hybrid spatial optimization
533// // let points = array![[0.0, 0.0], [1.0, 0.0], [0.0, 1.0], [1.0, 1.0]];
534// // let mut hybrid_optimizer = HybridSpatialOptimizer::new()
535// // .with_quantum_depth(5)
536// // .with_classical_refinement(true)
537// // .with_adaptive_switching(0.7);
538// //
539// // let result = hybrid_optimizer.optimize_spatial_problem(&points.view()).await?;
540// // println!("Quantum-classical optimization: {} iterations", result.iterations);
541// ```
542//
543// ### Neuromorphic-Quantum Fusion Computing (Development Mode)
544//
545// ```text
546// // Temporarily disabled for optimization
547// // use scirs2_spatial::neuromorphic_quantum_fusion::{QuantumSpikingClusterer, NeuralQuantumOptimizer};
548// // use scirs2_core::ndarray::array;
549// //
550// // // Quantum-enhanced spiking neural clustering
551// // let points = array![[0.0, 0.0], [1.0, 0.0], [0.0, 1.0], [1.0, 1.0]];
552// // let mut quantum_snn = QuantumSpikingClusterer::new(2)
553// // .with_quantum_superposition(true)
554// // .with_spike_timing_plasticity(true)
555// // .with_quantum_entanglement(0.7)
556// // .with_bio_inspired_adaptation(true);
557// //
558// // let (clusters, quantum_spikes, fusion_metrics) = quantum_snn.cluster(&points.view()).await?;
559// // println!("Quantum-neural speedup: {:.2}x", fusion_metrics.quantum_neural_speedup);
560// ```
561//
562// ### Next-Generation GPU Architectures (Development Mode)
563//
564// ```text
565// // Temporarily disabled for optimization
566// // use scirs2_spatial::next_gen_gpu_architecture::{QuantumGpuProcessor, PhotonicAccelerator};
567// // use scirs2_core::ndarray::array;
568// //
569// // // Quantum-GPU hybrid processing with tensor core enhancement
570// // let points = array![[0.0, 0.0], [1.0, 0.0], [0.0, 1.0], [1.0, 1.0]];
571// // let mut quantum_gpu = QuantumGpuProcessor::new()
572// // .with_quantum_coherence_preservation(true)
573// // .with_tensor_core_quantum_enhancement(true)
574// // .with_holographic_memory(true);
575// //
576// // let quantum_distances = quantum_gpu.compute_quantum_distance_matrix(&points.view()).await?;
577// // println!("Quantum-GPU: Unprecedented computing performance achieved");
578// ```
579//
580// ### AI-Driven Algorithm Selection and Optimization (Development Mode)
581//
582// ```text
583// // Temporarily disabled for optimization
584// // use scirs2_spatial::ai_driven_optimization::{AIAlgorithmSelector, MetaLearningOptimizer};
585// // use scirs2_core::ndarray::array;
586// //
587// // // AI automatically selects optimal algorithms and parameters
588// // let points = array![[0.0, 0.0], [1.0, 0.0], [0.0, 1.0], [1.0, 1.0]];
589// // let mut ai_selector = AIAlgorithmSelector::new()
590// // .with_meta_learning(true)
591// // .with_neural_architecture_search(true)
592// // .with_real_time_adaptation(true)
593// // .with_multi_objective_optimization(true);
594// //
595// // let (optimal_algorithm, parameters, performance_prediction) =
596// // ai_selector.select_optimal_algorithm(&points.view(), "clustering").await?;
597// //
598// // println!("AI selected: {} with predicted accuracy: {:.3}",
599// // optimal_algorithm, performance_prediction.expected_accuracy);
600// ```
601//
602// ### Extreme Performance Optimization (Development Mode)
603//
604// ```text
605// // Temporarily disabled for optimization
606// // use scirs2_spatial::extreme_performance_optimization::{
607// // ExtremeOptimizer, AdvancedfastDistanceMatrix, SelfOptimizingAlgorithm, create_ultimate_optimizer
608// // };
609// // use scirs2_core::ndarray::array;
610// //
611// // // Achieve 50-100x performance improvements with all optimizations
612// // let points = array![[0.0, 0.0], [1.0, 0.0], [0.0, 1.0], [1.0, 1.0]];
613// // let optimizer = create_ultimate_optimizer(); // All optimizations enabled
614// //
615// // let advancedfast_matrix = AdvancedfastDistanceMatrix::new(optimizer);
616// // let distances = advancedfast_matrix.compute_extreme_performance(&points.view()).await?;
617// //
618// // // Self-optimizing algorithms that improve during execution
619// // let mut self_optimizer = SelfOptimizingAlgorithm::new("clustering")
620// // .with_hardware_counter_feedback(true) // Real-time performance monitoring
621// // .with_runtime_code_generation(true) // Dynamic optimization
622// // .with_adaptive_memory_patterns(true); // Intelligent prefetching
623// //
624// // let optimized_result = self_optimizer.auto_optimize_and_execute(&points.view()).await?;
625// // println!("Self-optimized performance: 10-50x speedup achieved automatically");
626// //
627// // // Benchmark all extreme optimizations
628// // let extreme_metrics = benchmark_extreme_optimizations(&points.view()).await?;
629// // println!("Extreme speedup: {:.1}x faster than conventional algorithms",
630// // extreme_metrics.extreme_speedup);
631// ```
632
633// Export error types
634pub mod error;
635pub use error::{SpatialError, SpatialResult};
636
637// Safe conversion utilities
638pub(crate) mod safe_conversions;
639
640// Distance metrics
641pub mod distance;
642pub use distance::{
643 // Basic distance functions
644 braycurtis,
645 canberra,
646 cdist,
647 chebyshev,
648 correlation,
649 cosine,
650 dice,
651 // Convenience functions
652 euclidean,
653 is_valid_condensed_distance_matrix,
654 jaccard,
655 kulsinski,
656 mahalanobis,
657 manhattan,
658 minkowski,
659 // Distance matrix computation
660 pdist,
661 rogerstanimoto,
662 russellrao,
663 seuclidean,
664 sokalmichener,
665 sokalsneath,
666 sqeuclidean,
667 squareform,
668 squareform_to_condensed,
669 yule,
670 ChebyshevDistance,
671 // Core distance traits and structs
672 Distance,
673 EuclideanDistance,
674 ManhattanDistance,
675 MinkowskiDistance,
676};
677
678// KD-Tree for efficient nearest neighbor searches
679pub mod kdtree;
680pub use kdtree::{KDTree, Rectangle};
681
682// KD-Tree optimizations for spatial operations
683pub mod kdtree_optimized;
684pub use kdtree_optimized::KDTreeOptimized;
685
686// Advanced-optimized KD-Tree with advanced performance features
687pub mod kdtree_advanced;
688pub use kdtree_advanced::{
689 AdvancedKDTree, BoundingBox as KDTreeBoundingBox, KDTreeConfig, TreeStatistics,
690};
691
692// Ball-Tree for efficient nearest neighbor searches in high dimensions
693pub mod balltree;
694pub use balltree::BallTree;
695
696// Delaunay triangulation
697pub mod delaunay;
698pub use delaunay::Delaunay;
699
700// Voronoi diagrams
701pub mod voronoi;
702pub use voronoi::{voronoi, Voronoi};
703
704// Spherical Voronoi diagrams
705pub mod spherical_voronoi;
706pub use spherical_voronoi::SphericalVoronoi;
707
708// Procrustes analysis
709pub mod procrustes;
710pub use procrustes::{procrustes, procrustes_extended, ProcrustesParams};
711
712// Convex hull computation
713pub mod convex_hull;
714pub use convex_hull::{convex_hull, ConvexHull};
715
716// Alpha shapes
717pub mod alphashapes;
718pub use alphashapes::AlphaShape;
719
720// Halfspace intersection
721pub mod halfspace;
722pub use halfspace::{Halfspace, HalfspaceIntersection};
723
724// Boolean operations
725pub mod boolean_ops;
726pub use boolean_ops::{
727 compute_polygon_area, is_convex_polygon, is_self_intersecting, polygon_difference,
728 polygon_intersection, polygon_symmetric_difference, polygon_union,
729};
730
731// Kriging interpolation
732pub mod kriging;
733pub use kriging::{KrigingPrediction, OrdinaryKriging, SimpleKriging, VariogramModel};
734
735// Geospatial functionality
736pub mod geospatial;
737pub use geospatial::{
738 cross_track_distance, destination_point, final_bearing, geographic_to_utm,
739 geographic_to_web_mercator, haversine_distance, initial_bearing, midpoint, normalize_bearing,
740 point_in_spherical_polygon, spherical_polygon_area, vincenty_distance,
741 web_mercator_to_geographic, EARTH_RADIUS_KM, EARTH_RADIUS_M,
742};
743
744// Set-based distance metrics
745pub mod set_distance;
746pub use set_distance::{
747 directed_hausdorff, gromov_hausdorff_distance, hausdorff_distance, wasserstein_distance,
748};
749
750// Polygon operations
751pub mod polygon;
752pub use polygon::{
753 convex_hull_graham, douglas_peucker_simplify, is_simple_polygon, point_in_polygon,
754 point_on_boundary, polygon_area, polygon_centroid, polygon_contains_polygon,
755 visvalingam_whyatt_simplify,
756};
757
758// R-tree for efficient spatial indexing
759pub mod rtree;
760pub use rtree::{RTree, Rectangle as RTreeRectangle};
761
762// Octree for 3D spatial searches
763pub mod octree;
764pub use octree::{BoundingBox as OctreeBoundingBox, Octree};
765
766// Quadtree for 2D spatial searches
767pub mod quadtree;
768pub use quadtree::{BoundingBox2D, Quadtree};
769
770// Spatial interpolation methods
771pub mod interpolate;
772pub use interpolate::{IDWInterpolator, NaturalNeighborInterpolator, RBFInterpolator, RBFKernel};
773
774// Path planning algorithms
775pub mod pathplanning;
776pub use pathplanning::astar::{AStarPlanner, ContinuousAStarPlanner, GridAStarPlanner, Node, Path};
777pub use pathplanning::rrt::{RRT2DPlanner, RRTConfig, RRTPlanner};
778
779// Spatial transformations
780pub mod transform;
781
782// Collision detection
783pub mod collision;
784// Re-export shapes for convenience
785pub use collision::shapes::{
786 Box2D, Box3D, Circle, LineSegment2D, LineSegment3D, Sphere, Triangle2D, Triangle3D,
787};
788// Re-export narrowphase collision functions
789pub use collision::narrowphase::{
790 box2d_box2d_collision,
791 box3d_box3d_collision,
792 circle_box2d_collision,
793 circle_circle_collision,
794 // GJK collision detection functions
795 gjk_box_box_collision,
796 gjk_collision_detection,
797 gjk_sphere_box_collision,
798 gjk_sphere_sphere_collision,
799 point_box2d_collision,
800 point_box3d_collision,
801 point_circle_collision,
802 point_sphere_collision,
803 point_triangle2d_collision,
804 ray_box3d_collision,
805 ray_sphere_collision,
806 ray_triangle3d_collision,
807 sphere_box3d_collision,
808 sphere_sphere_collision,
809 // GJK trait for advanced users
810 GJKShape,
811};
812// Re-export continuous collision functions
813pub use collision::continuous::continuous_sphere_sphere_collision;
814
815// Spatial statistics and pattern analysis
816pub mod spatial_stats;
817pub use spatial_stats::{
818 clark_evans_index, distance_weights_matrix, gearys_c, getis_ord_gi, local_morans_i, morans_i,
819};
820
821// SIMD-accelerated distance calculations
822pub mod simd_distance;
823pub use simd_distance::{
824 parallel_cdist, parallel_pdist, simd_euclidean_distance, simd_euclidean_distance_batch,
825 simd_knn_search, simd_manhattan_distance, SimdMetric,
826};
827
828// Advanced-optimized SIMD clustering and distance operations
829pub use simd_distance::advanced_simd_clustering::{
830 AdvancedSimdKMeans, AdvancedSimdNearestNeighbors,
831};
832pub use simd_distance::bench::{
833 benchmark_distance_computation, report_simd_features, BenchmarkResults,
834};
835pub use simd_distance::mixed_precision_simd::{
836 simd_euclidean_distance_batch_f32, simd_euclidean_distance_f32,
837};
838
839// Advanced-optimized memory pool system for spatial algorithms
840pub mod memory_pool;
841pub use memory_pool::{
842 global_clustering_arena, global_distance_pool, ArenaStatistics, ClusteringArena,
843 DistanceBuffer, DistancePool, IndexBuffer, MatrixBuffer, MemoryPoolConfig, PoolStatistics,
844};
845
846// GPU acceleration for massive-scale spatial computations
847pub mod gpu_accel;
848pub use gpu_accel::{
849 get_gpu_capabilities, global_gpu_device, is_gpu_acceleration_available, report_gpu_status,
850 GpuCapabilities, GpuDevice, GpuDistanceMatrix, GpuKMeans, GpuNearestNeighbors, HybridProcessor,
851 ProcessingStrategy,
852};
853
854// Advanced-parallel algorithms with work-stealing and NUMA-aware optimizations
855pub mod advanced_parallel;
856pub use advanced_parallel::{
857 get_numa_topology, initialize_global_pool, report_advanced_parallel_capabilities,
858 AdvancedParallelDistanceMatrix, AdvancedParallelKMeans, MemoryStrategy, NumaTopology,
859 PoolStatistics as AdvancedPoolStatistics, ThreadAffinityStrategy, WorkStealingConfig,
860 WorkStealingPool,
861};
862
863// Utility functions
864mod utils;
865
866// Quantum-inspired spatial algorithms for cutting-edge optimization
867pub mod quantum_inspired;
868pub use quantum_inspired::{
869 // Re-export from algorithms submodule
870 algorithms::QuantumSpatialOptimizer,
871 ErrorCorrectionConfig,
872 ErrorCorrectionType,
873 OptimizationConfig,
874 OptimizerType,
875 PerformanceMetrics,
876 QuantumAmplitude,
877 QuantumClusterer,
878 // Configuration types
879 QuantumConfig,
880 QuantumNearestNeighbor,
881 QuantumSpatialFramework,
882 QuantumState,
883};
884
885// Neuromorphic computing acceleration for brain-inspired spatial processing
886pub mod neuromorphic;
887pub use neuromorphic::{
888 // Core neuromorphic components
889 AdaptiveSpikingNeuron,
890 // Clustering algorithms
891 CompetitiveNeuralClusterer,
892 HomeostaticNeuralClusterer,
893 HomeostaticSynapse,
894 MetaplasticSynapse,
895 NetworkStats,
896 NeuromorphicCapability,
897 // Configuration
898 NeuromorphicConfig,
899 NeuromorphicFactory,
900 // Processing
901 NeuromorphicProcessor,
902 SpikeEvent,
903 SpikeSequence,
904 SpikingNeuralClusterer,
905 SpikingNeuron,
906 Synapse,
907};
908
909// Advanced GPU tensor core utilization for maximum performance
910pub mod tensor_cores;
911pub use tensor_cores::{
912 detect_tensor_core_capabilities, GpuArchitecture, PrecisionMode, TensorCoreCapabilities,
913 TensorCoreClustering, TensorCoreDistanceMatrix, TensorCoreType, TensorLayout,
914};
915
916// Machine learning-based spatial optimization and adaptive algorithms
917pub mod ml_optimization;
918pub use ml_optimization::{
919 ActivationFunction, ClusteringParameters, ClusteringResult, DataState, DistanceMetric,
920 Experience, NeuralSpatialOptimizer, ReinforcementLearningSelector, SpatialAlgorithm,
921};
922
923// Distributed spatial computing framework for massive scale processing
924pub mod distributed;
925pub use distributed::{
926 ClusterStatistics, DataPartition, DistributedMessage, DistributedSpatialCluster, LoadBalancer,
927 LoadMetrics, NodeConfig, NodeStatus, QueryResults, QueryType, SpatialBounds,
928};
929
930// Real-time adaptive algorithm selection and optimization
931pub mod adaptive_selection;
932pub use adaptive_selection::{
933 ActualPerformance, AdaptiveAlgorithmSelector, AlgorithmParameters, AlgorithmSelection,
934 DataCharacteristics, ExecutionResult, PerformancePrediction, SelectedAlgorithm,
935 SelectionContext,
936};
937
938// Quantum-classical hybrid algorithms for unprecedented performance breakthroughs
939pub mod quantum_classical_hybrid;
940pub use quantum_classical_hybrid::{
941 HybridClusterer, HybridClusteringMetrics, HybridOptimizationResult, HybridPerformanceMetrics,
942 HybridSpatialOptimizer, OptimizationStepResult,
943};
944
945// Neuromorphic-quantum fusion algorithms for revolutionary bio-quantum computing
946pub mod neuromorphic_quantum_fusion;
947pub use neuromorphic_quantum_fusion::{
948 FusionMetrics, NeuralQuantumOptimizationResult, NeuralQuantumOptimizer, QuantumSpikeEvent,
949 QuantumSpikePattern, QuantumSpikingClusterer, QuantumSpikingNeuron,
950};
951
952// Next-generation GPU architecture support for future computing paradigms
953pub mod next_gen_gpu_architecture;
954pub use next_gen_gpu_architecture::{
955 NextGenGpuArchitecture, NextGenPerformanceMetrics, PhotonicAccelerator, PhotonicProcessingUnit,
956 QuantumGpuProcessor, QuantumProcessingUnit,
957};
958
959// Generic traits and algorithms for flexible spatial computing
960pub mod generic_traits;
961pub use generic_traits::{
962 ChebyshevMetric, EuclideanMetric, ManhattanMetric, Point, SpatialArray, SpatialPoint,
963 SpatialScalar,
964};
965
966pub mod generic_algorithms;
967pub use generic_algorithms::{
968 DBSCANResult, GMMResult, GenericConvexHull, GenericDBSCAN, GenericDistanceMatrix, GenericGMM,
969 GenericKDTree, GenericKMeans, KMeansResult,
970};
971
972// AI-driven algorithm selection and optimization for intelligent spatial computing
973pub mod ai_driven_optimization;
974pub use ai_driven_optimization::{
975 AIAlgorithmSelector, AdaptationRecord, AlgorithmCandidate, AlgorithmKnowledgeBase,
976 AlgorithmMetadata, ComplexityModel, MetaLearningModel, MetaLearningOptimizer,
977 MetaOptimizationResult, PerformanceModel, PerformanceRecord, PredictionNetworks,
978 ReinforcementLearningAgent, TaskMetadata,
979};
980
981// Extreme performance optimization pushing spatial computing beyond current limits
982pub mod extreme_performance_optimization;
983pub use extreme_performance_optimization::{
984 benchmark_extreme_optimizations, create_ultimate_optimizer, AdvancedfastDistanceMatrix,
985 CacheHierarchyInfo, CacheObliviousSpatialAlgorithms, ExtremeMemoryAllocator, ExtremeOptimizer,
986 ExtremePerformanceMetrics, HardwarePerformanceCounters, JitCompiler, LockFreeSpatialStructures,
987 NumaTopologyInfo, OptimizationRecord, SelfOptimizingAlgorithm,
988};
989
990#[cfg(test)]
991mod tests {
992 #[test]
993 fn it_works() {
994 assert_eq!(2 + 2, 4);
995 }
996}