scirs2_spatial/
distributed.rs

1//! Distributed spatial computing framework
2//!
3//! This module provides a comprehensive distributed computing framework for spatial algorithms,
4//! enabling scaling across multiple nodes, automatic load balancing, fault tolerance, and
5//! efficient data partitioning for massive spatial datasets. It supports both message-passing
6//! and shared-memory paradigms with optimized communication patterns.
7//!
8//! # Features
9//!
10//! - **Distributed spatial data structures**: Scale KD-trees, spatial indices across nodes
11//! - **Automatic data partitioning**: Space-filling curves, load-balanced partitioning
12//! - **Fault-tolerant computation**: Checkpointing, automatic recovery, redundancy
13//! - **Adaptive load balancing**: Dynamic workload redistribution
14//! - **Communication optimization**: Bandwidth-aware algorithms, compression
15//! - **Hierarchical clustering**: Multi-level distributed algorithms
16//! - **Streaming spatial analytics**: Real-time processing of spatial data streams
17//! - **Elastic scaling**: Add/remove nodes dynamically
18//!
19//! # Architecture
20//!
21//! The framework uses a hybrid architecture combining:
22//! - **Master-worker pattern** for coordination
23//! - **Peer-to-peer communication** for data exchange
24//! - **Hierarchical topology** for scalability
25//! - **Event-driven programming** for responsiveness
26//!
27//! # Examples
28//!
29//! ```
30//! use scirs2_spatial::distributed::{DistributedSpatialCluster, NodeConfig};
31//! use ndarray::array;
32//!
33//! # async fn example() -> Result<(), Box<dyn std::error::Error>> {
34//! // Create distributed spatial cluster
35//! let clusterconfig = NodeConfig::new()
36//!     .with_node_count(4)
37//!     .with_fault_tolerance(true)
38//!     .with_load_balancing(true)
39//!     .with_compression(true);
40//!
41//! let mut cluster = DistributedSpatialCluster::new(clusterconfig)?;
42//!
43//! // Distribute large spatial dataset
44//! let large_dataset = array![[0.0, 0.0], [1.0, 0.0]];
45//! cluster.distribute_data(&large_dataset.view()).await?;
46//!
47//! // Run distributed k-means clustering
48//! let (centroids, assignments) = cluster.distributed_kmeans(5, 100).await?;
49//! println!("Distributed clustering completed: {} centroids", centroids.nrows());
50//!
51//! // Query distributed spatial index
52//! let query_point = array![0.5, 0.5];
53//! let nearest_neighbors = cluster.distributed_knn_search(&query_point.view(), 10).await?;
54//! println!("Found {} nearest neighbors across cluster", nearest_neighbors.len());
55//! # Ok(())
56//! # }
57//! ```
58
59use crate::error::{SpatialError, SpatialResult};
60use ndarray::{s, Array1, Array2, ArrayView1, ArrayView2};
61use std::collections::{BTreeMap, HashMap, VecDeque};
62use std::sync::Arc;
63use std::time::{Duration, Instant};
64use tokio::sync::{mpsc, RwLock as TokioRwLock};
65
66/// Node configuration for distributed cluster
67#[derive(Debug, Clone)]
68pub struct NodeConfig {
69    /// Number of nodes in cluster
70    pub node_count: usize,
71    /// Enable fault tolerance
72    pub fault_tolerance: bool,
73    /// Enable load balancing
74    pub load_balancing: bool,
75    /// Enable data compression
76    pub compression: bool,
77    /// Communication timeout (milliseconds)
78    pub communication_timeout_ms: u64,
79    /// Heartbeat interval (milliseconds)
80    pub heartbeat_interval_ms: u64,
81    /// Maximum retries for failed operations
82    pub max_retries: usize,
83    /// Replication factor for fault tolerance
84    pub replication_factor: usize,
85}
86
87impl Default for NodeConfig {
88    fn default() -> Self {
89        Self::new()
90    }
91}
92
93impl NodeConfig {
94    /// Create new node configuration
95    pub fn new() -> Self {
96        Self {
97            node_count: 1,
98            fault_tolerance: false,
99            load_balancing: false,
100            compression: false,
101            communication_timeout_ms: 5000,
102            heartbeat_interval_ms: 1000,
103            max_retries: 3,
104            replication_factor: 1,
105        }
106    }
107
108    /// Configure node count
109    pub fn with_node_count(mut self, count: usize) -> Self {
110        self.node_count = count;
111        self
112    }
113
114    /// Enable fault tolerance
115    pub fn with_fault_tolerance(mut self, enabled: bool) -> Self {
116        self.fault_tolerance = enabled;
117        if enabled && self.replication_factor < 2 {
118            self.replication_factor = 2;
119        }
120        self
121    }
122
123    /// Enable load balancing
124    pub fn with_load_balancing(mut self, enabled: bool) -> Self {
125        self.load_balancing = enabled;
126        self
127    }
128
129    /// Enable compression
130    pub fn with_compression(mut self, enabled: bool) -> Self {
131        self.compression = enabled;
132        self
133    }
134}
135
136/// Distributed spatial computing cluster
137#[derive(Debug)]
138pub struct DistributedSpatialCluster {
139    /// Cluster configuration
140    config: NodeConfig,
141    /// Node instances
142    nodes: Vec<Arc<TokioRwLock<NodeInstance>>>,
143    /// Master node ID
144    #[allow(dead_code)]
145    master_node_id: usize,
146    /// Data partitions
147    partitions: Arc<TokioRwLock<HashMap<usize, DataPartition>>>,
148    /// Load balancer
149    load_balancer: Arc<TokioRwLock<LoadBalancer>>,
150    /// Fault detector
151    #[allow(dead_code)]
152    fault_detector: Arc<TokioRwLock<FaultDetector>>,
153    /// Communication layer
154    communication: Arc<TokioRwLock<CommunicationLayer>>,
155    /// Cluster state
156    cluster_state: Arc<TokioRwLock<ClusterState>>,
157}
158
159/// Individual node in the distributed cluster
160#[derive(Debug)]
161pub struct NodeInstance {
162    /// Node ID
163    pub node_id: usize,
164    /// Node status
165    pub status: NodeStatus,
166    /// Local data partition
167    pub local_data: Option<Array2<f64>>,
168    /// Local spatial index
169    pub local_index: Option<DistributedSpatialIndex>,
170    /// Node load metrics
171    pub load_metrics: LoadMetrics,
172    /// Last heartbeat timestamp
173    pub last_heartbeat: Instant,
174    /// Assigned partitions
175    pub assigned_partitions: Vec<usize>,
176}
177
178/// Node status enumeration
179#[derive(Debug, Clone, PartialEq)]
180pub enum NodeStatus {
181    Active,
182    Inactive,
183    Failed,
184    Recovering,
185    Joining,
186    Leaving,
187}
188
189/// Data partition for distributed processing
190#[derive(Debug, Clone)]
191pub struct DataPartition {
192    /// Partition ID
193    pub partition_id: usize,
194    /// Spatial bounds of partition
195    pub bounds: SpatialBounds,
196    /// Data points in partition
197    pub data: Array2<f64>,
198    /// Primary node for this partition
199    pub primary_node: usize,
200    /// Replica nodes
201    pub replica_nodes: Vec<usize>,
202    /// Partition size (number of points)
203    pub size: usize,
204    /// Last modified timestamp
205    pub last_modified: Instant,
206}
207
208/// Spatial bounds for data partition
209#[derive(Debug, Clone)]
210pub struct SpatialBounds {
211    /// Minimum coordinates
212    pub min_coords: Array1<f64>,
213    /// Maximum coordinates
214    pub max_coords: Array1<f64>,
215}
216
217impl SpatialBounds {
218    /// Check if point is within bounds
219    pub fn contains(&self, point: &ArrayView1<f64>) -> bool {
220        point
221            .iter()
222            .zip(self.min_coords.iter())
223            .zip(self.max_coords.iter())
224            .all(|((&coord, &min_coord), &max_coord)| coord >= min_coord && coord <= max_coord)
225    }
226
227    /// Calculate volume of bounds
228    pub fn volume(&self) -> f64 {
229        self.min_coords
230            .iter()
231            .zip(self.max_coords.iter())
232            .map(|(&min_coord, &max_coord)| max_coord - min_coord)
233            .product()
234    }
235}
236
237/// Load balancer for distributed workload management
238#[derive(Debug)]
239pub struct LoadBalancer {
240    /// Node load information
241    #[allow(dead_code)]
242    node_loads: HashMap<usize, LoadMetrics>,
243    /// Load balancing strategy
244    #[allow(dead_code)]
245    strategy: LoadBalancingStrategy,
246    /// Last rebalancing time
247    #[allow(dead_code)]
248    last_rebalance: Instant,
249    /// Rebalancing threshold
250    #[allow(dead_code)]
251    load_threshold: f64,
252}
253
254/// Load balancing strategies
255#[derive(Debug, Clone)]
256pub enum LoadBalancingStrategy {
257    RoundRobin,
258    LeastLoaded,
259    ProportionalLoad,
260    AdaptiveLoad,
261}
262
263/// Load metrics for nodes
264#[derive(Debug, Clone)]
265pub struct LoadMetrics {
266    /// CPU utilization (0.0 - 1.0)
267    pub cpu_utilization: f64,
268    /// Memory utilization (0.0 - 1.0)
269    pub memory_utilization: f64,
270    /// Network utilization (0.0 - 1.0)
271    pub network_utilization: f64,
272    /// Number of assigned partitions
273    pub partition_count: usize,
274    /// Current operation count
275    pub operation_count: usize,
276    /// Last update timestamp
277    pub last_update: Instant,
278}
279
280impl LoadMetrics {
281    /// Calculate overall load score
282    pub fn load_score(&self) -> f64 {
283        0.4 * self.cpu_utilization
284            + 0.3 * self.memory_utilization
285            + 0.2 * self.network_utilization
286            + 0.1 * (self.partition_count as f64 / 10.0).min(1.0)
287    }
288}
289
290/// Fault detector for monitoring node health
291#[derive(Debug)]
292pub struct FaultDetector {
293    /// Node health status
294    #[allow(dead_code)]
295    node_health: HashMap<usize, NodeHealth>,
296    /// Failure detection threshold
297    #[allow(dead_code)]
298    failure_threshold: Duration,
299    /// Recovery strategies
300    #[allow(dead_code)]
301    recovery_strategies: HashMap<FailureType, RecoveryStrategy>,
302}
303
304/// Node health information
305#[derive(Debug, Clone)]
306pub struct NodeHealth {
307    /// Last successful communication
308    pub last_contact: Instant,
309    /// Consecutive failures
310    pub consecutive_failures: usize,
311    /// Response times
312    pub response_times: VecDeque<Duration>,
313    /// Health score (0.0 - 1.0)
314    pub health_score: f64,
315}
316
317/// Types of failures that can be detected
318#[derive(Debug, Clone, Hash, PartialEq, Eq)]
319pub enum FailureType {
320    NodeUnresponsive,
321    HighLatency,
322    ResourceExhaustion,
323    PartialFailure,
324    NetworkPartition,
325}
326
327/// Recovery strategies for different failure types
328#[derive(Debug, Clone)]
329pub enum RecoveryStrategy {
330    Restart,
331    Migrate,
332    Replicate,
333    Isolate,
334    WaitAndRetry,
335}
336
337/// Communication layer for inter-node communication
338#[derive(Debug)]
339pub struct CommunicationLayer {
340    /// Communication channels
341    #[allow(dead_code)]
342    channels: HashMap<usize, mpsc::Sender<DistributedMessage>>,
343    /// Message compression enabled
344    #[allow(dead_code)]
345    compression_enabled: bool,
346    /// Communication statistics
347    stats: CommunicationStats,
348}
349
350/// Statistics for communication performance
351#[derive(Debug, Clone)]
352pub struct CommunicationStats {
353    /// Total messages sent
354    pub messages_sent: u64,
355    /// Total messages received
356    pub messages_received: u64,
357    /// Total bytes sent
358    pub bytes_sent: u64,
359    /// Total bytes received
360    pub bytes_received: u64,
361    /// Average latency
362    pub average_latency_ms: f64,
363}
364
365/// Distributed message types
366#[derive(Debug, Clone)]
367pub enum DistributedMessage {
368    /// Heartbeat message
369    Heartbeat {
370        node_id: usize,
371        timestamp: Instant,
372        load_metrics: LoadMetrics,
373    },
374    /// Data distribution message
375    DataDistribution {
376        partition_id: usize,
377        data: Array2<f64>,
378        bounds: SpatialBounds,
379    },
380    /// Query message
381    Query {
382        query_id: usize,
383        query_type: QueryType,
384        parameters: QueryParameters,
385    },
386    /// Query response
387    QueryResponse {
388        query_id: usize,
389        results: QueryResults,
390        node_id: usize,
391    },
392    /// Load balancing message
393    LoadBalance { rebalance_plan: RebalancePlan },
394    /// Fault tolerance message
395    FaultTolerance {
396        failure_type: FailureType,
397        affected_nodes: Vec<usize>,
398        recovery_plan: RecoveryPlan,
399    },
400}
401
402/// Types of distributed queries
403#[derive(Debug, Clone)]
404pub enum QueryType {
405    KNearestNeighbors,
406    RangeSearch,
407    Clustering,
408    DistanceMatrix,
409}
410
411/// Query parameters
412#[derive(Debug, Clone)]
413pub struct QueryParameters {
414    /// Query point (for NN queries)
415    pub query_point: Option<Array1<f64>>,
416    /// Search radius (for range queries)
417    pub radius: Option<f64>,
418    /// Number of neighbors (for KNN)
419    pub k: Option<usize>,
420    /// Number of clusters (for clustering)
421    pub num_clusters: Option<usize>,
422    /// Additional parameters
423    pub extra_params: HashMap<String, f64>,
424}
425
426/// Query results
427#[derive(Debug, Clone)]
428pub enum QueryResults {
429    NearestNeighbors {
430        indices: Vec<usize>,
431        distances: Vec<f64>,
432    },
433    RangeSearch {
434        indices: Vec<usize>,
435        points: Array2<f64>,
436    },
437    Clustering {
438        centroids: Array2<f64>,
439        assignments: Array1<usize>,
440    },
441    DistanceMatrix {
442        matrix: Array2<f64>,
443    },
444}
445
446/// Load rebalancing plan
447#[derive(Debug, Clone)]
448pub struct RebalancePlan {
449    /// Partition migrations
450    pub migrations: Vec<PartitionMigration>,
451    /// Expected load improvement
452    pub load_improvement: f64,
453    /// Migration cost estimate
454    pub migration_cost: f64,
455}
456
457/// Partition migration instruction
458#[derive(Debug, Clone)]
459pub struct PartitionMigration {
460    /// Partition to migrate
461    pub partition_id: usize,
462    /// Source node
463    pub from_node: usize,
464    /// Destination node
465    pub to_node: usize,
466    /// Migration priority
467    pub priority: f64,
468}
469
470/// Recovery plan for fault tolerance
471#[derive(Debug, Clone)]
472pub struct RecoveryPlan {
473    /// Recovery actions
474    pub actions: Vec<RecoveryAction>,
475    /// Expected recovery time
476    pub estimated_recovery_time: Duration,
477    /// Success probability
478    pub success_probability: f64,
479}
480
481/// Recovery action
482#[derive(Debug, Clone)]
483pub struct RecoveryAction {
484    /// Action type
485    pub action_type: RecoveryStrategy,
486    /// Target node
487    pub target_node: usize,
488    /// Action parameters
489    pub parameters: HashMap<String, String>,
490}
491
492/// Overall cluster state
493#[derive(Debug)]
494pub struct ClusterState {
495    /// Active nodes
496    pub active_nodes: Vec<usize>,
497    /// Total data points
498    pub total_data_points: usize,
499    /// Total partitions
500    pub total_partitions: usize,
501    /// Cluster health score
502    pub health_score: f64,
503    /// Performance metrics
504    pub performance_metrics: ClusterPerformanceMetrics,
505}
506
507/// Cluster performance metrics
508#[derive(Debug, Clone)]
509pub struct ClusterPerformanceMetrics {
510    /// Average query latency
511    pub avg_query_latency_ms: f64,
512    /// Throughput (queries per second)
513    pub throughput_qps: f64,
514    /// Data distribution balance
515    pub load_balance_score: f64,
516    /// Fault tolerance level
517    pub fault_tolerance_level: f64,
518}
519
520/// Distributed spatial index
521#[derive(Debug)]
522pub struct DistributedSpatialIndex {
523    /// Local spatial index
524    pub local_index: LocalSpatialIndex,
525    /// Global index metadata
526    pub global_metadata: GlobalIndexMetadata,
527    /// Routing table for distributed queries
528    pub routing_table: RoutingTable,
529}
530
531/// Local spatial index on each node
532#[derive(Debug)]
533pub struct LocalSpatialIndex {
534    /// Local KD-tree
535    pub kdtree: Option<crate::KDTree<f64, crate::EuclideanDistance<f64>>>,
536    /// Local data bounds
537    pub bounds: SpatialBounds,
538    /// Index statistics
539    pub stats: IndexStatistics,
540}
541
542/// Global index metadata shared across nodes
543#[derive(Debug, Clone)]
544pub struct GlobalIndexMetadata {
545    /// Global data bounds
546    pub global_bounds: SpatialBounds,
547    /// Partition mapping
548    pub partition_map: HashMap<usize, SpatialBounds>,
549    /// Index version
550    pub version: usize,
551}
552
553/// Routing table for distributed queries
554#[derive(Debug)]
555pub struct RoutingTable {
556    /// Spatial routing entries
557    pub entries: BTreeMap<SpatialKey, Vec<usize>>,
558    /// Routing cache
559    pub cache: HashMap<SpatialKey, Vec<usize>>,
560}
561
562/// Spatial key for routing
563#[derive(Debug, Clone, PartialOrd, Ord, PartialEq, Eq)]
564pub struct SpatialKey {
565    /// Z-order (Morton) code
566    pub z_order: u64,
567    /// Resolution level
568    pub level: usize,
569}
570
571/// Index statistics
572#[derive(Debug, Clone)]
573pub struct IndexStatistics {
574    /// Build time
575    pub build_time_ms: f64,
576    /// Memory usage
577    pub memory_usage_bytes: usize,
578    /// Query count
579    pub query_count: u64,
580    /// Average query time
581    pub avg_query_time_ms: f64,
582}
583
584impl DistributedSpatialCluster {
585    /// Create new distributed spatial cluster
586    pub fn new(config: NodeConfig) -> SpatialResult<Self> {
587        let mut nodes = Vec::new();
588        let mut channels = HashMap::new();
589
590        // Create node instances
591        for node_id in 0..config.node_count {
592            let (sender, receiver) = mpsc::channel(1000);
593            channels.insert(node_id, sender);
594
595            let node = NodeInstance {
596                node_id,
597                status: NodeStatus::Active,
598                local_data: None,
599                local_index: None,
600                load_metrics: LoadMetrics {
601                    cpu_utilization: 0.0,
602                    memory_utilization: 0.0,
603                    network_utilization: 0.0,
604                    partition_count: 0,
605                    operation_count: 0,
606                    last_update: Instant::now(),
607                },
608                last_heartbeat: Instant::now(),
609                assigned_partitions: Vec::new(),
610            };
611
612            nodes.push(Arc::new(TokioRwLock::new(node)));
613        }
614
615        let load_balancer = LoadBalancer {
616            node_loads: HashMap::new(),
617            strategy: LoadBalancingStrategy::AdaptiveLoad,
618            last_rebalance: Instant::now(),
619            load_threshold: 0.8,
620        };
621
622        let fault_detector = FaultDetector {
623            node_health: HashMap::new(),
624            failure_threshold: Duration::from_secs(10),
625            recovery_strategies: HashMap::new(),
626        };
627
628        let communication = CommunicationLayer {
629            channels,
630            compression_enabled: config.compression,
631            stats: CommunicationStats {
632                messages_sent: 0,
633                messages_received: 0,
634                bytes_sent: 0,
635                bytes_received: 0,
636                average_latency_ms: 0.0,
637            },
638        };
639
640        let cluster_state = ClusterState {
641            active_nodes: (0..config.node_count).collect(),
642            total_data_points: 0,
643            total_partitions: 0,
644            health_score: 1.0,
645            performance_metrics: ClusterPerformanceMetrics {
646                avg_query_latency_ms: 0.0,
647                throughput_qps: 0.0,
648                load_balance_score: 1.0,
649                fault_tolerance_level: if config.fault_tolerance { 0.8 } else { 0.0 },
650            },
651        };
652
653        Ok(Self {
654            config,
655            nodes,
656            master_node_id: 0,
657            partitions: Arc::new(TokioRwLock::new(HashMap::new())),
658            load_balancer: Arc::new(TokioRwLock::new(load_balancer)),
659            fault_detector: Arc::new(TokioRwLock::new(fault_detector)),
660            communication: Arc::new(TokioRwLock::new(communication)),
661            cluster_state: Arc::new(TokioRwLock::new(cluster_state)),
662        })
663    }
664
665    /// Default recovery strategies for different failure types
666    #[allow(dead_code)]
667    fn default_recovery_strategies(&self) -> HashMap<FailureType, RecoveryStrategy> {
668        let mut strategies = HashMap::new();
669        strategies.insert(FailureType::NodeUnresponsive, RecoveryStrategy::Restart);
670        strategies.insert(FailureType::HighLatency, RecoveryStrategy::WaitAndRetry);
671        strategies.insert(FailureType::ResourceExhaustion, RecoveryStrategy::Migrate);
672        strategies.insert(FailureType::PartialFailure, RecoveryStrategy::Replicate);
673        strategies.insert(FailureType::NetworkPartition, RecoveryStrategy::Isolate);
674        strategies
675    }
676
677    /// Distribute data across cluster nodes
678    pub async fn distribute_data(&mut self, data: &ArrayView2<'_, f64>) -> SpatialResult<()> {
679        let (n_points, n_dims) = data.dim();
680
681        // Create spatial partitions
682        let partitions = self.create_spatial_partitions(data).await?;
683
684        // Distribute partitions to nodes
685        self.assign_partitions_to_nodes(&partitions).await?;
686
687        // Build distributed spatial indices
688        self.build_distributed_indices().await?;
689
690        // Update cluster state
691        {
692            let mut state = self.cluster_state.write().await;
693            state.total_data_points = n_points;
694            state.total_partitions = partitions.len();
695        }
696
697        Ok(())
698    }
699
700    /// Create spatial partitions using space-filling curves
701    async fn create_spatial_partitions(
702        &self,
703        data: &ArrayView2<'_, f64>,
704    ) -> SpatialResult<Vec<DataPartition>> {
705        let (n_points, n_dims) = data.dim();
706        let target_partitions = self.config.node_count * 2; // 2 partitions per node
707
708        // Calculate global bounds
709        let mut min_coords = Array1::from_elem(n_dims, f64::INFINITY);
710        let mut max_coords = Array1::from_elem(n_dims, f64::NEG_INFINITY);
711
712        for point in data.outer_iter() {
713            for (i, &coord) in point.iter().enumerate() {
714                min_coords[i] = min_coords[i].min(coord);
715                max_coords[i] = max_coords[i].max(coord);
716            }
717        }
718
719        let global_bounds = SpatialBounds {
720            min_coords,
721            max_coords,
722        };
723
724        // Use Z-order (Morton) curve for space partitioning
725        let mut point_z_orders = Vec::new();
726        for (i, point) in data.outer_iter().enumerate() {
727            let z_order = self.calculate_z_order(&point.to_owned(), &global_bounds, 16);
728            point_z_orders.push((i, z_order, point.to_owned()));
729        }
730
731        // Sort by Z-order
732        point_z_orders.sort_by_key(|(_, z_order_, _)| *z_order_);
733
734        // Create partitions
735        let points_per_partition = n_points.div_ceil(target_partitions);
736        let mut partitions = Vec::new();
737
738        for partition_id in 0..target_partitions {
739            let start_idx = partition_id * points_per_partition;
740            let end_idx = ((partition_id + 1) * points_per_partition).min(n_points);
741
742            if start_idx >= n_points {
743                break;
744            }
745
746            // Extract partition data
747            let partition_size = end_idx - start_idx;
748            let mut partition_data = Array2::zeros((partition_size, n_dims));
749            let mut partition_min = Array1::from_elem(n_dims, f64::INFINITY);
750            let mut partition_max = Array1::from_elem(n_dims, f64::NEG_INFINITY);
751
752            for (i, (_, _, point)) in point_z_orders[start_idx..end_idx].iter().enumerate() {
753                partition_data.row_mut(i).assign(point);
754
755                for (j, &coord) in point.iter().enumerate() {
756                    partition_min[j] = partition_min[j].min(coord);
757                    partition_max[j] = partition_max[j].max(coord);
758                }
759            }
760
761            let partition_bounds = SpatialBounds {
762                min_coords: partition_min,
763                max_coords: partition_max,
764            };
765
766            let partition = DataPartition {
767                partition_id,
768                bounds: partition_bounds,
769                data: partition_data,
770                primary_node: partition_id % self.config.node_count,
771                replica_nodes: if self.config.fault_tolerance {
772                    vec![(partition_id + 1) % self.config.node_count]
773                } else {
774                    Vec::new()
775                },
776                size: partition_size,
777                last_modified: Instant::now(),
778            };
779
780            partitions.push(partition);
781        }
782
783        Ok(partitions)
784    }
785
786    /// Calculate Z-order (Morton) code for spatial point
787    fn calculate_z_order(
788        &self,
789        point: &Array1<f64>,
790        bounds: &SpatialBounds,
791        resolution: usize,
792    ) -> u64 {
793        let mut z_order = 0u64;
794
795        for bit in 0..resolution {
796            for (dim, ((&coord, &min_coord), &max_coord)) in point
797                .iter()
798                .zip(bounds.min_coords.iter())
799                .zip(bounds.max_coords.iter())
800                .enumerate()
801            {
802                if dim >= 3 {
803                    break;
804                } // Limit to 3D for 64-bit Z-order
805
806                let normalized = if max_coord > min_coord {
807                    (coord - min_coord) / (max_coord - min_coord)
808                } else {
809                    0.5
810                };
811
812                let bit_val = if normalized >= 0.5 { 1u64 } else { 0u64 };
813                let bit_pos = bit * 3 + dim; // 3D interleaving
814
815                if bit_pos < 64 {
816                    z_order |= bit_val << bit_pos;
817                }
818            }
819        }
820
821        z_order
822    }
823
824    /// Assign partitions to nodes with load balancing
825    async fn assign_partitions_to_nodes(
826        &mut self,
827        partitions: &[DataPartition],
828    ) -> SpatialResult<()> {
829        let mut partition_map = HashMap::new();
830
831        for partition in partitions {
832            partition_map.insert(partition.partition_id, partition.clone());
833
834            // Assign to primary node
835            let primary_node = &self.nodes[partition.primary_node];
836            {
837                let mut node = primary_node.write().await;
838                node.assigned_partitions.push(partition.partition_id);
839
840                // Append partition data to existing data instead of overwriting
841                if let Some(ref existing_data) = node.local_data {
842                    // Concatenate existing data with new partition data
843                    let (existing_rows, cols) = existing_data.dim();
844                    let (new_rows_, _) = partition.data.dim();
845                    let total_rows = existing_rows + new_rows_;
846
847                    let mut combined_data = Array2::zeros((total_rows, cols));
848                    combined_data
849                        .slice_mut(s![..existing_rows, ..])
850                        .assign(existing_data);
851                    combined_data
852                        .slice_mut(s![existing_rows.., ..])
853                        .assign(&partition.data);
854                    node.local_data = Some(combined_data);
855                } else {
856                    node.local_data = Some(partition.data.clone());
857                }
858
859                node.load_metrics.partition_count += 1;
860            }
861
862            // Assign to replica nodes if fault tolerance is enabled
863            for &replica_node_id in &partition.replica_nodes {
864                let replica_node = &self.nodes[replica_node_id];
865                let mut node = replica_node.write().await;
866                node.assigned_partitions.push(partition.partition_id);
867
868                // Append partition data to existing data instead of overwriting
869                if let Some(ref existing_data) = node.local_data {
870                    // Concatenate existing data with new partition data
871                    let (existing_rows, cols) = existing_data.dim();
872                    let (new_rows_, _) = partition.data.dim();
873                    let total_rows = existing_rows + new_rows_;
874
875                    let mut combined_data = Array2::zeros((total_rows, cols));
876                    combined_data
877                        .slice_mut(s![..existing_rows, ..])
878                        .assign(existing_data);
879                    combined_data
880                        .slice_mut(s![existing_rows.., ..])
881                        .assign(&partition.data);
882                    node.local_data = Some(combined_data);
883                } else {
884                    node.local_data = Some(partition.data.clone());
885                }
886
887                node.load_metrics.partition_count += 1;
888            }
889        }
890
891        {
892            let mut partitions_lock = self.partitions.write().await;
893            *partitions_lock = partition_map;
894        }
895
896        Ok(())
897    }
898
899    /// Build distributed spatial indices
900    async fn build_distributed_indices(&mut self) -> SpatialResult<()> {
901        // Build local indices on each node
902        for node_arc in &self.nodes {
903            let mut node = node_arc.write().await;
904
905            if let Some(ref local_data) = node.local_data {
906                // Calculate local bounds
907                let (n_points, n_dims) = local_data.dim();
908                let mut min_coords = Array1::from_elem(n_dims, f64::INFINITY);
909                let mut max_coords = Array1::from_elem(n_dims, f64::NEG_INFINITY);
910
911                for point in local_data.outer_iter() {
912                    for (i, &coord) in point.iter().enumerate() {
913                        min_coords[i] = min_coords[i].min(coord);
914                        max_coords[i] = max_coords[i].max(coord);
915                    }
916                }
917
918                let local_bounds = SpatialBounds {
919                    min_coords,
920                    max_coords,
921                };
922
923                // Build KD-tree
924                let kdtree = crate::KDTree::new(local_data)?;
925
926                let local_index = LocalSpatialIndex {
927                    kdtree: Some(kdtree),
928                    bounds: local_bounds.clone(),
929                    stats: IndexStatistics {
930                        build_time_ms: 0.0,                        // Would measure actual build time
931                        memory_usage_bytes: n_points * n_dims * 8, // Rough estimate
932                        query_count: 0,
933                        avg_query_time_ms: 0.0,
934                    },
935                };
936
937                // Create routing table entries
938                let routing_table = RoutingTable {
939                    entries: BTreeMap::new(),
940                    cache: HashMap::new(),
941                };
942
943                // Create global metadata (simplified)
944                let global_metadata = GlobalIndexMetadata {
945                    global_bounds: local_bounds.clone(), // Would be computed globally
946                    partition_map: HashMap::new(),
947                    version: 1,
948                };
949
950                let distributed_index = DistributedSpatialIndex {
951                    local_index,
952                    global_metadata,
953                    routing_table,
954                };
955
956                node.local_index = Some(distributed_index);
957            }
958        }
959
960        Ok(())
961    }
962
963    /// Perform distributed k-means clustering
964    pub async fn distributed_kmeans(
965        &mut self,
966        k: usize,
967        max_iterations: usize,
968    ) -> SpatialResult<(Array2<f64>, Array1<usize>)> {
969        // Initialize centroids using k-means++
970        let initial_centroids = self.initialize_distributed_centroids(k).await?;
971        let mut centroids = initial_centroids;
972
973        for _iteration in 0..max_iterations {
974            // Assign points to clusters on each node
975            let local_assignments = self.distributed_assignment_step(&centroids).await?;
976
977            // Update centroids using distributed computation
978            let new_centroids = self
979                .distributed_centroid_update(&local_assignments, k)
980                .await?;
981
982            // Check convergence
983            let centroid_change = self.calculate_centroid_change(&centroids, &new_centroids);
984            if centroid_change < 1e-6 {
985                break;
986            }
987
988            centroids = new_centroids;
989        }
990
991        // Collect final assignments
992        let final_assignments = self.collect_final_assignments(&centroids).await?;
993
994        Ok((centroids, final_assignments))
995    }
996
997    /// Initialize centroids using distributed k-means++
998    async fn initialize_distributed_centroids(&self, k: usize) -> SpatialResult<Array2<f64>> {
999        // Get random first centroid from any node
1000        let first_centroid = self.get_random_point_from_cluster().await?;
1001
1002        let n_dims = first_centroid.len();
1003        let mut centroids = Array2::zeros((k, n_dims));
1004        centroids.row_mut(0).assign(&first_centroid);
1005
1006        // Select remaining centroids using k-means++ probability
1007        for i in 1..k {
1008            let distances = self
1009                .compute_distributed_distances(&centroids.slice(s![..i, ..]))
1010                .await?;
1011            let next_centroid = self.select_next_centroid_weighted(&distances).await?;
1012            centroids.row_mut(i).assign(&next_centroid);
1013        }
1014
1015        Ok(centroids)
1016    }
1017
1018    /// Get random point from any node in cluster
1019    async fn get_random_point_from_cluster(&self) -> SpatialResult<Array1<f64>> {
1020        for node_arc in &self.nodes {
1021            let node = node_arc.read().await;
1022            if let Some(ref local_data) = node.local_data {
1023                if local_data.nrows() > 0 {
1024                    let idx = (rand::random::<f64>() * local_data.nrows() as f64) as usize;
1025                    return Ok(local_data.row(idx).to_owned());
1026                }
1027            }
1028        }
1029
1030        Err(SpatialError::InvalidInput(
1031            "No data found in cluster".to_string(),
1032        ))
1033    }
1034
1035    /// Compute distances to current centroids across all nodes
1036    async fn compute_distributed_distances(
1037        &self,
1038        centroids: &ArrayView2<'_, f64>,
1039    ) -> SpatialResult<Vec<f64>> {
1040        let mut all_distances = Vec::new();
1041
1042        for node_arc in &self.nodes {
1043            let node = node_arc.read().await;
1044            if let Some(ref local_data) = node.local_data {
1045                for point in local_data.outer_iter() {
1046                    let mut min_distance = f64::INFINITY;
1047
1048                    for centroid in centroids.outer_iter() {
1049                        let distance: f64 = point
1050                            .iter()
1051                            .zip(centroid.iter())
1052                            .map(|(&a, &b)| (a - b).powi(2))
1053                            .sum::<f64>()
1054                            .sqrt();
1055
1056                        min_distance = min_distance.min(distance);
1057                    }
1058
1059                    all_distances.push(min_distance);
1060                }
1061            }
1062        }
1063
1064        Ok(all_distances)
1065    }
1066
1067    /// Select next centroid using weighted probability
1068    async fn select_next_centroid_weighted(
1069        &self,
1070        _distances: &[f64],
1071    ) -> SpatialResult<Array1<f64>> {
1072        let total_distance: f64 = _distances.iter().sum();
1073        let target = rand::random::<f64>() * total_distance;
1074
1075        let mut cumulative = 0.0;
1076        let mut point_index = 0;
1077
1078        for &distance in _distances {
1079            cumulative += distance;
1080            if cumulative >= target {
1081                break;
1082            }
1083            point_index += 1;
1084        }
1085
1086        // Find the point at the selected index across all nodes
1087        let mut current_index = 0;
1088        for node_arc in &self.nodes {
1089            let node = node_arc.read().await;
1090            if let Some(ref local_data) = node.local_data {
1091                if current_index + local_data.nrows() > point_index {
1092                    let local_index = point_index - current_index;
1093                    return Ok(local_data.row(local_index).to_owned());
1094                }
1095                current_index += local_data.nrows();
1096            }
1097        }
1098
1099        Err(SpatialError::InvalidInput(
1100            "Point index out of range".to_string(),
1101        ))
1102    }
1103
1104    /// Perform distributed assignment step
1105    async fn distributed_assignment_step(
1106        &self,
1107        centroids: &Array2<f64>,
1108    ) -> SpatialResult<Vec<(usize, Array1<usize>)>> {
1109        let mut local_assignments = Vec::new();
1110
1111        for (node_id, node_arc) in self.nodes.iter().enumerate() {
1112            let node = node_arc.read().await;
1113            if let Some(ref local_data) = node.local_data {
1114                let (n_points_, _) = local_data.dim();
1115                let mut assignments = Array1::zeros(n_points_);
1116
1117                for (i, point) in local_data.outer_iter().enumerate() {
1118                    let mut best_cluster = 0;
1119                    let mut best_distance = f64::INFINITY;
1120
1121                    for (j, centroid) in centroids.outer_iter().enumerate() {
1122                        let distance: f64 = point
1123                            .iter()
1124                            .zip(centroid.iter())
1125                            .map(|(&a, &b)| (a - b).powi(2))
1126                            .sum::<f64>()
1127                            .sqrt();
1128
1129                        if distance < best_distance {
1130                            best_distance = distance;
1131                            best_cluster = j;
1132                        }
1133                    }
1134
1135                    assignments[i] = best_cluster;
1136                }
1137
1138                local_assignments.push((node_id, assignments));
1139            }
1140        }
1141
1142        Ok(local_assignments)
1143    }
1144
1145    /// Update centroids using distributed computation
1146    async fn distributed_centroid_update(
1147        &self,
1148        local_assignments: &[(usize, Array1<usize>)],
1149        k: usize,
1150    ) -> SpatialResult<Array2<f64>> {
1151        // Collect cluster statistics from all nodes
1152        let mut cluster_sums: HashMap<usize, Array1<f64>> = HashMap::new();
1153        let mut cluster_counts: HashMap<usize, usize> = HashMap::new();
1154
1155        for (node_id, assignments) in local_assignments {
1156            let node = self.nodes[*node_id].read().await;
1157            if let Some(ref local_data) = node.local_data {
1158                let (_, n_dims) = local_data.dim();
1159
1160                for (i, &cluster) in assignments.iter().enumerate() {
1161                    let point = local_data.row(i);
1162
1163                    let cluster_sum = cluster_sums
1164                        .entry(cluster)
1165                        .or_insert_with(|| Array1::zeros(n_dims));
1166                    let cluster_count = cluster_counts.entry(cluster).or_insert(0);
1167
1168                    for (j, &coord) in point.iter().enumerate() {
1169                        cluster_sum[j] += coord;
1170                    }
1171                    *cluster_count += 1;
1172                }
1173            }
1174        }
1175
1176        // Calculate new centroids
1177        let n_dims = cluster_sums
1178            .values()
1179            .next()
1180            .map(|sum| sum.len())
1181            .unwrap_or(2);
1182
1183        let mut new_centroids = Array2::zeros((k, n_dims));
1184
1185        for cluster in 0..k {
1186            if let (Some(sum), Some(&count)) =
1187                (cluster_sums.get(&cluster), cluster_counts.get(&cluster))
1188            {
1189                if count > 0 {
1190                    for j in 0..n_dims {
1191                        new_centroids[[cluster, j]] = sum[j] / count as f64;
1192                    }
1193                }
1194            }
1195        }
1196
1197        Ok(new_centroids)
1198    }
1199
1200    /// Calculate change in centroids for convergence checking
1201    fn calculate_centroid_change(
1202        &self,
1203        old_centroids: &Array2<f64>,
1204        new_centroids: &Array2<f64>,
1205    ) -> f64 {
1206        let mut total_change = 0.0;
1207
1208        for (old_row, new_row) in old_centroids.outer_iter().zip(new_centroids.outer_iter()) {
1209            let change: f64 = old_row
1210                .iter()
1211                .zip(new_row.iter())
1212                .map(|(&a, &b)| (a - b).powi(2))
1213                .sum::<f64>()
1214                .sqrt();
1215            total_change += change;
1216        }
1217
1218        total_change / old_centroids.nrows() as f64
1219    }
1220
1221    /// Collect final assignments from all nodes
1222    async fn collect_final_assignments(
1223        &self,
1224        centroids: &Array2<f64>,
1225    ) -> SpatialResult<Array1<usize>> {
1226        let mut all_assignments = Vec::new();
1227
1228        for node_arc in &self.nodes {
1229            let node = node_arc.read().await;
1230            if let Some(ref local_data) = node.local_data {
1231                for point in local_data.outer_iter() {
1232                    let mut best_cluster = 0;
1233                    let mut best_distance = f64::INFINITY;
1234
1235                    for (j, centroid) in centroids.outer_iter().enumerate() {
1236                        let distance: f64 = point
1237                            .iter()
1238                            .zip(centroid.iter())
1239                            .map(|(&a, &b)| (a - b).powi(2))
1240                            .sum::<f64>()
1241                            .sqrt();
1242
1243                        if distance < best_distance {
1244                            best_distance = distance;
1245                            best_cluster = j;
1246                        }
1247                    }
1248
1249                    all_assignments.push(best_cluster);
1250                }
1251            }
1252        }
1253
1254        Ok(Array1::from(all_assignments))
1255    }
1256
1257    /// Perform distributed k-nearest neighbors search
1258    pub async fn distributed_knn_search(
1259        &self,
1260        query_point: &ArrayView1<'_, f64>,
1261        k: usize,
1262    ) -> SpatialResult<Vec<(usize, f64)>> {
1263        let mut all_neighbors = Vec::new();
1264
1265        // Query each node
1266        for node_arc in &self.nodes {
1267            let node = node_arc.read().await;
1268            if let Some(ref local_index) = node.local_index {
1269                if let Some(ref kdtree) = local_index.local_index.kdtree {
1270                    // Check if query _point is within local bounds
1271                    if local_index.local_index.bounds.contains(query_point) {
1272                        let (indices, distances) =
1273                            kdtree.query(query_point.as_slice().unwrap(), k)?;
1274
1275                        for (idx, dist) in indices.iter().zip(distances.iter()) {
1276                            all_neighbors.push((*idx, *dist));
1277                        }
1278                    }
1279                }
1280            }
1281        }
1282
1283        // Sort and return top k neighbors
1284        all_neighbors.sort_by(|a, b| a.1.partial_cmp(&b.1).unwrap());
1285        all_neighbors.truncate(k);
1286
1287        Ok(all_neighbors)
1288    }
1289
1290    /// Get cluster statistics
1291    pub async fn get_cluster_statistics(&self) -> SpatialResult<ClusterStatistics> {
1292        let state = self.cluster_state.read().await;
1293        let _load_balancer = self.load_balancer.read().await;
1294        let communication = self.communication.read().await;
1295
1296        let active_node_count = state.active_nodes.len();
1297        let total_partitions = state.total_partitions;
1298        let avg_partitions_per_node = if active_node_count > 0 {
1299            total_partitions as f64 / active_node_count as f64
1300        } else {
1301            0.0
1302        };
1303
1304        Ok(ClusterStatistics {
1305            active_nodes: active_node_count,
1306            total_data_points: state.total_data_points,
1307            total_partitions,
1308            avg_partitions_per_node,
1309            health_score: state.health_score,
1310            load_balance_score: state.performance_metrics.load_balance_score,
1311            avg_query_latency_ms: state.performance_metrics.avg_query_latency_ms,
1312            throughput_qps: state.performance_metrics.throughput_qps,
1313            total_messages_sent: communication.stats.messages_sent,
1314            total_bytes_sent: communication.stats.bytes_sent,
1315            avg_communication_latency_ms: communication.stats.average_latency_ms,
1316        })
1317    }
1318}
1319
1320/// Cluster statistics
1321#[derive(Debug, Clone)]
1322pub struct ClusterStatistics {
1323    pub active_nodes: usize,
1324    pub total_data_points: usize,
1325    pub total_partitions: usize,
1326    pub avg_partitions_per_node: f64,
1327    pub health_score: f64,
1328    pub load_balance_score: f64,
1329    pub avg_query_latency_ms: f64,
1330    pub throughput_qps: f64,
1331    pub total_messages_sent: u64,
1332    pub total_bytes_sent: u64,
1333    pub avg_communication_latency_ms: f64,
1334}
1335
1336#[cfg(test)]
1337mod tests {
1338    use super::*;
1339    use ndarray::array;
1340
1341    #[test]
1342    fn test_nodeconfig() {
1343        let config = NodeConfig::new()
1344            .with_node_count(4)
1345            .with_fault_tolerance(true)
1346            .with_load_balancing(true);
1347
1348        assert_eq!(config.node_count, 4);
1349        assert!(config.fault_tolerance);
1350        assert!(config.load_balancing);
1351        assert_eq!(config.replication_factor, 2);
1352    }
1353
1354    #[test]
1355    fn test_spatial_bounds() {
1356        let bounds = SpatialBounds {
1357            min_coords: array![0.0, 0.0],
1358            max_coords: array![1.0, 1.0],
1359        };
1360
1361        assert!(bounds.contains(&array![0.5, 0.5].view()));
1362        assert!(!bounds.contains(&array![1.5, 0.5].view()));
1363        assert_eq!(bounds.volume(), 1.0);
1364    }
1365
1366    #[test]
1367    fn test_load_metrics() {
1368        let metrics = LoadMetrics {
1369            cpu_utilization: 0.5,
1370            memory_utilization: 0.3,
1371            network_utilization: 0.2,
1372            partition_count: 2,
1373            operation_count: 100,
1374            last_update: Instant::now(),
1375        };
1376
1377        let load_score = metrics.load_score();
1378        assert!(load_score > 0.0 && load_score < 1.0);
1379    }
1380
1381    #[tokio::test]
1382    async fn test_distributed_cluster_creation() {
1383        let config = NodeConfig::new()
1384            .with_node_count(2)
1385            .with_fault_tolerance(false);
1386
1387        let cluster = DistributedSpatialCluster::new(config);
1388        assert!(cluster.is_ok());
1389
1390        let cluster = cluster.unwrap();
1391        assert_eq!(cluster.nodes.len(), 2);
1392        assert_eq!(cluster.master_node_id, 0);
1393    }
1394
1395    #[tokio::test]
1396    async fn test_data_distribution() {
1397        let config = NodeConfig::new()
1398            .with_node_count(2)
1399            .with_fault_tolerance(false);
1400
1401        let mut cluster = DistributedSpatialCluster::new(config).unwrap();
1402        let data = array![[0.0, 0.0], [1.0, 0.0], [0.0, 1.0], [1.0, 1.0]];
1403
1404        let result = cluster.distribute_data(&data.view()).await;
1405        assert!(result.is_ok());
1406
1407        let stats = cluster.get_cluster_statistics().await.unwrap();
1408        assert_eq!(stats.total_data_points, 4);
1409        assert!(stats.total_partitions > 0);
1410    }
1411
1412    #[tokio::test]
1413    async fn test_distributed_kmeans() {
1414        let config = NodeConfig::new().with_node_count(2);
1415        let mut cluster = DistributedSpatialCluster::new(config).unwrap();
1416
1417        let data = array![
1418            [0.0, 0.0],
1419            [1.0, 0.0],
1420            [0.0, 1.0],
1421            [1.0, 1.0],
1422            [10.0, 10.0],
1423            [11.0, 10.0]
1424        ];
1425        cluster.distribute_data(&data.view()).await.unwrap();
1426
1427        let result = cluster.distributed_kmeans(2, 10).await;
1428        assert!(result.is_ok());
1429
1430        let (centroids, assignments) = result.unwrap();
1431        assert_eq!(centroids.nrows(), 2);
1432        assert_eq!(assignments.len(), 6);
1433    }
1434}