scirs2_interpolate/tensor.rs
1//! Tensor product interpolation
2//!
3//! This module provides interpolation methods for structured high-dimensional data
4//! using tensor product approaches.
5
6use crate::error::InterpolateResult;
7use crate::interp1d::InterpolationMethod;
8use scirs2_core::ndarray::{Array1, ArrayView2};
9use scirs2_core::numeric::{Float, FromPrimitive};
10use std::fmt::Debug;
11
12/// Tensor product interpolator for multi-dimensional data on structured grids
13///
14/// This interpolator uses a tensor product approach for efficient interpolation on
15/// structured grids, where the data points form a regular grid along each dimension.
16#[derive(Debug, Clone)]
17#[allow(dead_code)]
18pub struct TensorProductInterpolator<F: Float + FromPrimitive + Debug> {
19 /// Coordinates along each dimension
20 coords: Vec<Array1<F>>,
21 /// Interpolation method
22 method: InterpolationMethod,
23}
24
25impl<F: Float + FromPrimitive + Debug> TensorProductInterpolator<F> {
26 /// Create a new tensor product interpolator
27 ///
28 /// # Arguments
29 ///
30 /// * `coords` - Coordinates along each dimension
31 /// * `method` - Interpolation method to use for each dimension
32 ///
33 /// # Returns
34 ///
35 /// A new `TensorProductInterpolator` object
36 ///
37 /// # Examples
38 ///
39 /// ```rust
40 /// use scirs2_core::ndarray::Array1;
41 /// use scirs2_interpolate::tensor::TensorProductInterpolator;
42 /// use scirs2_interpolate::interp1d::InterpolationMethod;
43 ///
44 /// // Create coordinates for a 2D grid
45 /// let x_coords = Array1::from_vec(vec![0.0, 1.0, 2.0]);
46 /// let y_coords = Array1::from_vec(vec![0.0, 0.5, 1.0]);
47 /// let coords = vec![x_coords, y_coords];
48 ///
49 /// // Create tensor product interpolator with linear interpolation
50 /// let interpolator = TensorProductInterpolator::new(coords, InterpolationMethod::Linear);
51 ///
52 /// println!("Tensor product interpolator created for 2D grid");
53 /// ```
54 pub fn new(coords: Vec<Array1<F>>, method: InterpolationMethod) -> Self {
55 Self { coords, method }
56 }
57
58 /// Evaluate the interpolator at multiple points
59 ///
60 /// # Arguments
61 ///
62 /// * `points` - Points at which to evaluate (one point per row)
63 /// * `values` - Values on the grid
64 ///
65 /// # Returns
66 ///
67 /// Interpolated values at the points
68 pub fn evaluate(
69 &self,
70 points: &ArrayView2<F>,
71 _values: &scirs2_core::ndarray::ArrayD<F>,
72 ) -> InterpolateResult<Array1<F>> {
73 // This is a placeholder implementation
74 // In a full implementation, we would:
75 // 1. Check dimensions and validate input data
76 // 2. Perform tensor product interpolation at each point
77
78 // For now, just return zeros
79 let n_points = points.shape()[0];
80 let result = Array1::zeros(n_points);
81
82 // In the future, implement proper tensor product interpolation here
83
84 Ok(result)
85 }
86}
87
88/// Interpolate N-dimensional data on a regular grid using tensor product methods
89///
90/// # Arguments
91///
92/// * `coords` - Coordinates along each dimension
93/// * `values` - Values on the grid
94/// * `points` - Points at which to evaluate (one point per row)
95/// * `method` - Interpolation method to use
96///
97/// # Returns
98///
99/// Interpolated values at the points
100#[allow(dead_code)]
101pub fn tensor_product_interpolate<F>(
102 _coords: &[Array1<F>],
103 _values: &scirs2_core::ndarray::ArrayD<F>,
104 points: &ArrayView2<F>,
105 _method: InterpolationMethod,
106) -> InterpolateResult<Array1<F>>
107where
108 F: Float + FromPrimitive + Debug,
109{
110 // This is a placeholder implementation
111 // In a full implementation, we would:
112 // 1. Check dimensions and validate input data
113 // 2. Create a TensorProductInterpolator
114 // 3. Evaluate at all points
115
116 // For now, just return zeros
117 let n_points = points.shape()[0];
118 let result = Array1::zeros(n_points);
119
120 // In the future, implement proper tensor product interpolation here
121
122 Ok(result)
123}
124
125/// High-order tensor product interpolation using Lagrange polynomials
126///
127/// This interpolator uses tensor products of Lagrange polynomials for high-order
128/// interpolation on structured grids.
129#[derive(Debug, Clone)]
130#[allow(dead_code)]
131pub struct LagrangeTensorInterpolator<F: Float + FromPrimitive + Debug> {
132 /// Coordinates along each dimension
133 coords: Vec<Array1<F>>,
134}
135
136impl<F: Float + FromPrimitive + Debug> LagrangeTensorInterpolator<F> {
137 /// Create a new high-order tensor product interpolator using Lagrange polynomials
138 ///
139 /// # Arguments
140 ///
141 /// * `coords` - Coordinates along each dimension
142 ///
143 /// # Returns
144 ///
145 /// A new `LagrangeTensorInterpolator` object
146 pub fn new(coords: Vec<Array1<F>>) -> Self {
147 Self { coords }
148 }
149
150 /// Evaluate the interpolator at multiple points
151 ///
152 /// # Arguments
153 ///
154 /// * `points` - Points at which to evaluate (one point per row)
155 /// * `values` - Values on the grid
156 ///
157 /// # Returns
158 ///
159 /// Interpolated values at the points
160 pub fn evaluate(
161 &self,
162 points: &ArrayView2<F>,
163 _values: &scirs2_core::ndarray::ArrayD<F>,
164 ) -> InterpolateResult<Array1<F>> {
165 // This is a placeholder implementation
166 // In a full implementation, we would:
167 // 1. Check dimensions and validate input data
168 // 2. Perform Lagrange tensor product interpolation at each point
169
170 // For now, just return zeros
171 let n_points = points.shape()[0];
172 let result = Array1::zeros(n_points);
173
174 // In the future, implement proper high-order interpolation here
175
176 Ok(result)
177 }
178}
179
180/// Higher-order tensor product interpolation using Lagrange polynomials
181///
182/// # Arguments
183///
184/// * `coords` - Coordinates along each dimension
185/// * `values` - Values on the grid
186/// * `points` - Points at which to evaluate (one point per row)
187///
188/// # Returns
189///
190/// Interpolated values at the points
191#[allow(dead_code)]
192pub fn lagrange_tensor_interpolate<F>(
193 _coords: &[Array1<F>],
194 _values: &scirs2_core::ndarray::ArrayD<F>,
195 points: &ArrayView2<F>,
196) -> InterpolateResult<Array1<F>>
197where
198 F: Float + FromPrimitive + Debug,
199{
200 // This is a placeholder implementation
201 // In a full implementation, we would:
202 // 1. Check dimensions and validate input data
203 // 2. Create a LagrangeTensorInterpolator
204 // 3. Evaluate at all points
205
206 // For now, just return zeros
207 let n_points = points.shape()[0];
208 let result = Array1::zeros(n_points);
209
210 // In the future, implement proper high-order interpolation here
211
212 Ok(result)
213}
214
215#[cfg(test)]
216mod tests {
217 use super::*;
218 use scirs2_core::ndarray::array;
219
220 #[test]
221 fn test_tensor_product_interpolator() {
222 // This is a placeholder test
223 // In a full implementation, we would:
224 // 1. Create a test grid and values
225 // 2. Create a TensorProductInterpolator
226 // 3. Evaluate at test points and verify results
227
228 // For now, just check that the API works
229 let x = array![0.0, 1.0, 2.0];
230 let y = array![0.0, 1.0, 2.0];
231 let coords = vec![x, y];
232
233 let interp = TensorProductInterpolator::new(coords, InterpolationMethod::Linear);
234
235 // Just a basic smoke test
236 assert_eq!(interp.coords.len(), 2);
237 assert_eq!(interp.method, InterpolationMethod::Linear);
238 }
239}