scirs2_interpolate/
tensor.rs

1//! Tensor product interpolation
2//!
3//! This module provides interpolation methods for structured high-dimensional data
4//! using tensor product approaches.
5
6use crate::error::InterpolateResult;
7use crate::interp1d::InterpolationMethod;
8use scirs2_core::ndarray::{Array1, ArrayView2};
9use scirs2_core::numeric::{Float, FromPrimitive};
10use std::fmt::Debug;
11
12/// Tensor product interpolator for multi-dimensional data on structured grids
13///
14/// This interpolator uses a tensor product approach for efficient interpolation on
15/// structured grids, where the data points form a regular grid along each dimension.
16#[derive(Debug, Clone)]
17#[allow(dead_code)]
18pub struct TensorProductInterpolator<F: Float + FromPrimitive + Debug> {
19    /// Coordinates along each dimension
20    coords: Vec<Array1<F>>,
21    /// Interpolation method
22    method: InterpolationMethod,
23}
24
25impl<F: Float + FromPrimitive + Debug> TensorProductInterpolator<F> {
26    /// Create a new tensor product interpolator
27    ///
28    /// # Arguments
29    ///
30    /// * `coords` - Coordinates along each dimension
31    /// * `method` - Interpolation method to use for each dimension
32    ///
33    /// # Returns
34    ///
35    /// A new `TensorProductInterpolator` object
36    ///
37    /// # Examples
38    ///
39    /// ```rust
40    /// use scirs2_core::ndarray::Array1;
41    /// use scirs2_interpolate::tensor::TensorProductInterpolator;
42    /// use scirs2_interpolate::interp1d::InterpolationMethod;
43    ///
44    /// // Create coordinates for a 2D grid
45    /// let x_coords = Array1::from_vec(vec![0.0, 1.0, 2.0]);
46    /// let y_coords = Array1::from_vec(vec![0.0, 0.5, 1.0]);
47    /// let coords = vec![x_coords, y_coords];
48    ///
49    /// // Create tensor product interpolator with linear interpolation
50    /// let interpolator = TensorProductInterpolator::new(coords, InterpolationMethod::Linear);
51    ///
52    /// println!("Tensor product interpolator created for 2D grid");
53    /// ```
54    pub fn new(coords: Vec<Array1<F>>, method: InterpolationMethod) -> Self {
55        Self { coords, method }
56    }
57
58    /// Evaluate the interpolator at multiple points
59    ///
60    /// # Arguments
61    ///
62    /// * `points` - Points at which to evaluate (one point per row)
63    /// * `values` - Values on the grid
64    ///
65    /// # Returns
66    ///
67    /// Interpolated values at the points
68    pub fn evaluate(
69        &self,
70        points: &ArrayView2<F>,
71        _values: &scirs2_core::ndarray::ArrayD<F>,
72    ) -> InterpolateResult<Array1<F>> {
73        // This is a placeholder implementation
74        // In a full implementation, we would:
75        // 1. Check dimensions and validate input data
76        // 2. Perform tensor product interpolation at each point
77
78        // For now, just return zeros
79        let n_points = points.shape()[0];
80        let result = Array1::zeros(n_points);
81
82        // In the future, implement proper tensor product interpolation here
83
84        Ok(result)
85    }
86}
87
88/// Interpolate N-dimensional data on a regular grid using tensor product methods
89///
90/// # Arguments
91///
92/// * `coords` - Coordinates along each dimension
93/// * `values` - Values on the grid
94/// * `points` - Points at which to evaluate (one point per row)
95/// * `method` - Interpolation method to use
96///
97/// # Returns
98///
99/// Interpolated values at the points
100#[allow(dead_code)]
101pub fn tensor_product_interpolate<F>(
102    _coords: &[Array1<F>],
103    _values: &scirs2_core::ndarray::ArrayD<F>,
104    points: &ArrayView2<F>,
105    _method: InterpolationMethod,
106) -> InterpolateResult<Array1<F>>
107where
108    F: Float + FromPrimitive + Debug,
109{
110    // This is a placeholder implementation
111    // In a full implementation, we would:
112    // 1. Check dimensions and validate input data
113    // 2. Create a TensorProductInterpolator
114    // 3. Evaluate at all points
115
116    // For now, just return zeros
117    let n_points = points.shape()[0];
118    let result = Array1::zeros(n_points);
119
120    // In the future, implement proper tensor product interpolation here
121
122    Ok(result)
123}
124
125/// High-order tensor product interpolation using Lagrange polynomials
126///
127/// This interpolator uses tensor products of Lagrange polynomials for high-order
128/// interpolation on structured grids.
129#[derive(Debug, Clone)]
130#[allow(dead_code)]
131pub struct LagrangeTensorInterpolator<F: Float + FromPrimitive + Debug> {
132    /// Coordinates along each dimension
133    coords: Vec<Array1<F>>,
134}
135
136impl<F: Float + FromPrimitive + Debug> LagrangeTensorInterpolator<F> {
137    /// Create a new high-order tensor product interpolator using Lagrange polynomials
138    ///
139    /// # Arguments
140    ///
141    /// * `coords` - Coordinates along each dimension
142    ///
143    /// # Returns
144    ///
145    /// A new `LagrangeTensorInterpolator` object
146    pub fn new(coords: Vec<Array1<F>>) -> Self {
147        Self { coords }
148    }
149
150    /// Evaluate the interpolator at multiple points
151    ///
152    /// # Arguments
153    ///
154    /// * `points` - Points at which to evaluate (one point per row)
155    /// * `values` - Values on the grid
156    ///
157    /// # Returns
158    ///
159    /// Interpolated values at the points
160    pub fn evaluate(
161        &self,
162        points: &ArrayView2<F>,
163        _values: &scirs2_core::ndarray::ArrayD<F>,
164    ) -> InterpolateResult<Array1<F>> {
165        // This is a placeholder implementation
166        // In a full implementation, we would:
167        // 1. Check dimensions and validate input data
168        // 2. Perform Lagrange tensor product interpolation at each point
169
170        // For now, just return zeros
171        let n_points = points.shape()[0];
172        let result = Array1::zeros(n_points);
173
174        // In the future, implement proper high-order interpolation here
175
176        Ok(result)
177    }
178}
179
180/// Higher-order tensor product interpolation using Lagrange polynomials
181///
182/// # Arguments
183///
184/// * `coords` - Coordinates along each dimension
185/// * `values` - Values on the grid
186/// * `points` - Points at which to evaluate (one point per row)
187///
188/// # Returns
189///
190/// Interpolated values at the points
191#[allow(dead_code)]
192pub fn lagrange_tensor_interpolate<F>(
193    _coords: &[Array1<F>],
194    _values: &scirs2_core::ndarray::ArrayD<F>,
195    points: &ArrayView2<F>,
196) -> InterpolateResult<Array1<F>>
197where
198    F: Float + FromPrimitive + Debug,
199{
200    // This is a placeholder implementation
201    // In a full implementation, we would:
202    // 1. Check dimensions and validate input data
203    // 2. Create a LagrangeTensorInterpolator
204    // 3. Evaluate at all points
205
206    // For now, just return zeros
207    let n_points = points.shape()[0];
208    let result = Array1::zeros(n_points);
209
210    // In the future, implement proper high-order interpolation here
211
212    Ok(result)
213}
214
215#[cfg(test)]
216mod tests {
217    use super::*;
218    use scirs2_core::ndarray::array;
219
220    #[test]
221    fn test_tensor_product_interpolator() {
222        // This is a placeholder test
223        // In a full implementation, we would:
224        // 1. Create a test grid and values
225        // 2. Create a TensorProductInterpolator
226        // 3. Evaluate at test points and verify results
227
228        // For now, just check that the API works
229        let x = array![0.0, 1.0, 2.0];
230        let y = array![0.0, 1.0, 2.0];
231        let coords = vec![x, y];
232
233        let interp = TensorProductInterpolator::new(coords, InterpolationMethod::Linear);
234
235        // Just a basic smoke test
236        assert_eq!(interp.coords.len(), 2);
237        assert_eq!(interp.method, InterpolationMethod::Linear);
238    }
239}