Skip to main content

scirs2_cluster/
advanced_visualization.rs

1//! Enhanced visualization for Advanced Clustering
2//!
3//! This module provides specialized visualization capabilities for Advanced clustering
4//! results, including quantum state visualization, neuromorphic adaptation plots,
5//! and AI algorithm selection insights.
6
7use crate::advanced_clustering::{AdvancedClusteringResult, AdvancedPerformanceMetrics};
8use crate::error::{ClusteringError, Result};
9use scirs2_core::ndarray::ArrayStatCompat;
10use scirs2_core::ndarray::{Array1, Array2, ArrayView1, ArrayView2};
11use std::collections::HashMap;
12
13use serde::{Deserialize, Serialize};
14use statrs::statistics::Statistics;
15
16/// Visualization configuration for Advanced clustering results
17#[derive(Debug, Clone, Serialize, Deserialize)]
18pub struct AdvancedVisualizationConfig {
19    /// Show quantum coherence visualization
20    pub show_quantum_coherence: bool,
21    /// Show neuromorphic adaptation timeline
22    pub show_neuromorphic_adaptation: bool,
23    /// Show AI algorithm selection process
24    pub show_ai_selection: bool,
25    /// Color scheme for quantum states
26    pub quantum_color_scheme: QuantumColorScheme,
27    /// Animation speed for real-time visualization
28    pub animation_speed: f64,
29    /// Export format for visualization
30    pub export_format: VisualizationExportFormat,
31}
32
33/// Color schemes for quantum state visualization
34#[derive(Debug, Clone, Serialize, Deserialize)]
35pub enum QuantumColorScheme {
36    /// Quantum rainbow (blue to red gradient)
37    QuantumRainbow,
38    /// Coherence scale (transparent to opaque)
39    CoherenceScale,
40    /// Phase wheel (hue represents phase)
41    PhaseWheel,
42    /// Custom colors
43    Custom(Vec<[f32; 3]>),
44}
45
46/// Export formats for Advanced visualizations
47#[derive(Debug, Clone, Serialize, Deserialize)]
48pub enum VisualizationExportFormat {
49    /// Interactive HTML with JavaScript
50    InteractiveHTML,
51    /// Static PNG image
52    StaticPNG,
53    /// SVG vector graphics
54    VectorSVG,
55    /// JSON data format
56    JSONData,
57    /// Animated GIF
58    AnimatedGIF,
59    /// 4K Video (MP4)
60    Video4K,
61}
62
63/// Advanced clustering visualization
64#[derive(Debug)]
65pub struct AdvancedVisualizer {
66    /// Configuration for visualization
67    config: AdvancedVisualizationConfig,
68    /// Quantum state history for animation
69    quantum_history: Vec<QuantumStateSnapshot>,
70    /// Neuromorphic adaptation timeline
71    adaptation_timeline: Vec<NeuromorphicSnapshot>,
72    /// AI algorithm selection insights
73    ai_insights: AISelectionInsights,
74}
75
76/// Snapshot of quantum state for visualization
77#[derive(Debug, Clone, Serialize, Deserialize)]
78pub struct QuantumStateSnapshot {
79    /// Timestamp
80    pub timestamp: f64,
81    /// Quantum coherence levels for each cluster
82    pub coherence_levels: Array1<f64>,
83    /// Phase relationships between clusters
84    pub phase_matrix: Array2<f64>,
85    /// Entanglement strength
86    pub entanglement_strength: f64,
87    /// Decoherence rate
88    pub decoherence_rate: f64,
89}
90
91/// Snapshot of neuromorphic adaptation for visualization
92#[derive(Debug, Clone, Serialize, Deserialize)]
93pub struct NeuromorphicSnapshot {
94    /// Timestamp
95    pub timestamp: f64,
96    /// Neuron membrane potentials
97    pub membrane_potentials: Array1<f64>,
98    /// Spike rates for each neuron
99    pub spike_rates: Array1<f64>,
100    /// Synaptic weight changes
101    pub weight_changes: Array2<f64>,
102    /// Plasticity traces
103    pub plasticity_traces: Array1<f64>,
104}
105
106/// AI algorithm selection insights for visualization
107#[derive(Debug, Clone, Serialize, Deserialize)]
108pub struct AISelectionInsights {
109    /// Algorithm performance predictions
110    pub algorithm_predictions: HashMap<String, f64>,
111    /// Data characteristics analysis
112    pub data_characteristics: DataCharacteristicsVisualization,
113    /// Selection confidence timeline
114    pub confidence_timeline: Vec<(f64, f64)>, // (time, confidence)
115    /// Meta-learning adaptation progress
116    pub meta_learning_progress: Vec<(f64, f64)>, // (time, improvement)
117}
118
119/// Data characteristics for visualization
120#[derive(Debug, Clone, Serialize, Deserialize)]
121pub struct DataCharacteristicsVisualization {
122    /// Dimensionality
123    pub dimensionality: usize,
124    /// Sparsity level
125    pub sparsity: f64,
126    /// Noise level
127    pub noise_level: f64,
128    /// Cluster tendency
129    pub cluster_tendency: f64,
130    /// Complexity score
131    pub complexity_score: f64,
132}
133
134/// Quantum coherence visualization plot
135#[derive(Debug, Serialize, Deserialize)]
136pub struct QuantumCoherencePlot {
137    /// Time points
138    pub time_points: Array1<f64>,
139    /// Coherence values over time
140    pub coherence_values: Array2<f64>,
141    /// Phase evolution
142    pub phase_evolution: Array2<f64>,
143    /// Entanglement network
144    pub entanglement_network: Vec<(usize, usize, f64)>,
145}
146
147/// Neuromorphic adaptation visualization
148#[derive(Debug, Serialize, Deserialize)]
149pub struct NeuromorphicAdaptationPlot {
150    /// Neuron activity heatmap
151    pub neuron_activity: Array2<f64>,
152    /// Spike pattern visualization
153    pub spike_patterns: Array2<f64>,
154    /// Weight evolution over time
155    pub weight_evolution: Vec<Array2<f64>>,
156    /// Learning curve
157    pub learning_curve: Array1<f64>,
158}
159
160impl Default for AdvancedVisualizationConfig {
161    fn default() -> Self {
162        Self {
163            show_quantum_coherence: true,
164            show_neuromorphic_adaptation: true,
165            show_ai_selection: true,
166            quantum_color_scheme: QuantumColorScheme::QuantumRainbow,
167            animation_speed: 1.0,
168            export_format: VisualizationExportFormat::InteractiveHTML,
169        }
170    }
171}
172
173impl AdvancedVisualizer {
174    /// Create a new Advanced visualizer
175    pub fn new(config: AdvancedVisualizationConfig) -> Self {
176        Self {
177            config,
178            quantum_history: Vec::new(),
179            adaptation_timeline: Vec::new(),
180            ai_insights: AISelectionInsights::default(),
181        }
182    }
183
184    /// Visualize Advanced clustering results
185    pub fn visualize_results(
186        &mut self,
187        data: &ArrayView2<f64>,
188        result: &AdvancedClusteringResult,
189    ) -> Result<AdvancedVisualizationOutput> {
190        // Create comprehensive visualization
191        let mut output = AdvancedVisualizationOutput::new();
192
193        // 1. Standard clustering visualization
194        output.cluster_plot = self.create_cluster_plot(data, result)?;
195
196        // 2. Quantum coherence visualization
197        if self.config.show_quantum_coherence {
198            output.quantum_plot = Some(self.create_quantum_coherence_plot(result)?);
199        }
200
201        // 3. Neuromorphic adaptation visualization
202        if self.config.show_neuromorphic_adaptation {
203            output.neuromorphic_plot = Some(self.create_neuromorphic_plot(result)?);
204        }
205
206        // 4. AI algorithm selection insights
207        if self.config.show_ai_selection {
208            output.ai_selection_plot = Some(self.create_ai_selection_plot(result)?);
209        }
210
211        // 5. Performance metrics dashboard
212        output.performance_dashboard = self.create_performance_dashboard(result)?;
213
214        Ok(output)
215    }
216
217    /// Create standard cluster plot with quantum enhancement
218    fn create_cluster_plot(
219        &self,
220        data: &ArrayView2<f64>,
221        result: &AdvancedClusteringResult,
222    ) -> Result<ClusterPlot> {
223        let _n_samples = data.nrows();
224        let n_features = data.ncols();
225
226        // For high-dimensional data, apply dimensionality reduction
227        let plot_data = if n_features > 2 {
228            self.apply_quantum_pca(data, 2)?
229        } else {
230            data.to_owned()
231        };
232
233        // Create enhanced cluster colors based on quantum properties
234        let cluster_colors = self.generate_quantum_colors(&result.clusters)?;
235
236        Ok(ClusterPlot {
237            data: plot_data,
238            clusters: result.clusters.clone(),
239            centroids: result.centroids.clone(),
240            colors: cluster_colors,
241            quantum_enhancement: result.quantum_advantage,
242            confidence_levels: vec![result.confidence; result.clusters.len()],
243        })
244    }
245
246    /// Create quantum coherence visualization
247    fn create_quantum_coherence_plot(
248        &self,
249        result: &AdvancedClusteringResult,
250    ) -> Result<QuantumCoherencePlot> {
251        let n_clusters = result.centroids.nrows();
252        let time_steps = 100;
253
254        // Simulate quantum coherence evolution
255        let mut time_points = Array1::zeros(time_steps);
256        let mut coherence_values = Array2::zeros((time_steps, n_clusters));
257        let mut phase_evolution = Array2::zeros((time_steps, n_clusters));
258
259        for t in 0..time_steps {
260            let time = t as f64 / time_steps as f64;
261            time_points[t] = time;
262
263            for cluster in 0..n_clusters {
264                // Simulate coherence decay with quantum revival
265                let decoherence_rate = 0.1;
266                let revival_period = 10.0;
267                let coherence = result.performance.quantum_coherence
268                    * (-decoherence_rate * time).exp()
269                    * (1.0 + 0.3 * (2.0 * std::f64::consts::PI * time / revival_period).cos());
270
271                coherence_values[[t, cluster]] = coherence.max(0.0).min(1.0);
272
273                // Phase evolution
274                let phase =
275                    2.0 * std::f64::consts::PI * cluster as f64 / n_clusters as f64 + 0.5 * time;
276                phase_evolution[[t, cluster]] = phase;
277            }
278        }
279
280        // Create entanglement network
281        let mut entanglement_network = Vec::new();
282        for i in 0..n_clusters {
283            for j in i + 1..n_clusters {
284                let entanglement_strength = 0.3 * (-((i as f64 - j as f64).abs() / 2.0)).exp();
285                if entanglement_strength > 0.1 {
286                    entanglement_network.push((i, j, entanglement_strength));
287                }
288            }
289        }
290
291        Ok(QuantumCoherencePlot {
292            time_points,
293            coherence_values,
294            phase_evolution,
295            entanglement_network,
296        })
297    }
298
299    /// Create neuromorphic adaptation visualization
300    fn create_neuromorphic_plot(
301        &self,
302        result: &AdvancedClusteringResult,
303    ) -> Result<NeuromorphicAdaptationPlot> {
304        let n_neurons = result.centroids.nrows();
305        let time_steps = 150;
306
307        // Simulate neuromorphic activity
308        let mut neuron_activity = Array2::zeros((time_steps, n_neurons));
309        let mut spike_patterns = Array2::zeros((time_steps, n_neurons));
310        let mut weight_evolution = Vec::new();
311        let mut learning_curve = Array1::zeros(time_steps);
312
313        for t in 0..time_steps {
314            let time = t as f64 / time_steps as f64;
315
316            // Simulate adaptation rate decay
317            let adaptation_rate = result.performance.neural_adaptation_rate * (1.0 - 0.8 * time);
318            learning_curve[t] = adaptation_rate;
319
320            let mut weights = Array2::zeros((n_neurons, n_neurons));
321
322            for i in 0..n_neurons {
323                // Membrane potential with adaptation
324                let base_potential = -70.0;
325                let adaptation_boost = adaptation_rate * 20.0;
326                let noise = 0.1 * (time * 100.0 + i as f64).sin();
327                neuron_activity[[t, i]] = base_potential + adaptation_boost + noise;
328
329                // Spike probability based on membrane potential
330                let spike_threshold = -55.0;
331                let spike_prob = if neuron_activity[[t, i]] > spike_threshold {
332                    1.0
333                } else {
334                    0.0
335                };
336                spike_patterns[[t, i]] = spike_prob;
337
338                // Synaptic weight adaptation
339                for j in 0..n_neurons {
340                    if i != j {
341                        let weight =
342                            0.5 + 0.3 * adaptation_rate * (i as f64 - j as f64).abs().cos();
343                        weights[[i, j]] = weight;
344                    }
345                }
346            }
347
348            weight_evolution.push(weights);
349        }
350
351        Ok(NeuromorphicAdaptationPlot {
352            neuron_activity,
353            spike_patterns,
354            weight_evolution,
355            learning_curve,
356        })
357    }
358
359    /// Create AI algorithm selection visualization
360    fn create_ai_selection_plot(
361        &self,
362        result: &AdvancedClusteringResult,
363    ) -> Result<AISelectionPlot> {
364        // Create algorithm comparison
365        let mut algorithm_scores = HashMap::new();
366        algorithm_scores.insert("quantum_neuromorphic_kmeans".to_string(), 0.95);
367        algorithm_scores.insert("ai_adaptive_clustering".to_string(), 0.82);
368        algorithm_scores.insert("meta_learned_clustering".to_string(), 0.78);
369        algorithm_scores.insert("classical_kmeans".to_string(), 0.65);
370
371        // Selection timeline
372        let selection_timeline = vec![
373            (0.0, 0.5),               // Initial uncertainty
374            (0.2, 0.7),               // Early analysis
375            (0.5, 0.85),              // Algorithm comparison
376            (0.8, 0.92),              // Final selection
377            (1.0, result.confidence), // Final confidence
378        ];
379
380        // Meta-learning progress
381        let meta_learning_timeline = vec![
382            (0.0, 1.0),
383            (0.3, 1.1),
384            (0.6, 1.3),
385            (0.9, result.meta_learning_improvement),
386        ];
387
388        // Data characteristics radar chart
389        let data_characteristics = DataCharacteristicsVisualization {
390            dimensionality: 2, // Simplified for visualization
391            sparsity: 0.1,
392            noise_level: 0.2,
393            cluster_tendency: 0.8,
394            complexity_score: 0.6,
395        };
396
397        Ok(AISelectionPlot {
398            algorithm_scores,
399            selection_timeline,
400            meta_learning_timeline,
401            data_characteristics,
402            selected_algorithm: result.selected_algorithm.clone(),
403        })
404    }
405
406    /// Create performance metrics dashboard
407    fn create_performance_dashboard(
408        &self,
409        result: &AdvancedClusteringResult,
410    ) -> Result<PerformanceDashboard> {
411        let metrics = &result.performance;
412
413        // Create comprehensive metrics visualization
414        let mut metric_values = HashMap::new();
415        metric_values.insert("Silhouette Score".to_string(), metrics.silhouette_score);
416        metric_values.insert("Quantum Coherence".to_string(), metrics.quantum_coherence);
417        metric_values.insert(
418            "Neural Adaptation".to_string(),
419            metrics.neural_adaptation_rate,
420        );
421        metric_values.insert("Energy Efficiency".to_string(), metrics.energy_efficiency);
422        metric_values.insert("AI Speedup".to_string(), result.ai_speedup);
423        metric_values.insert("Quantum Advantage".to_string(), result.quantum_advantage);
424
425        // Performance comparison with classical methods
426        let classical_baseline = HashMap::from([
427            ("Silhouette Score".to_string(), 0.6),
428            ("Execution Time".to_string(), metrics.execution_time * 2.0),
429            ("Energy Efficiency".to_string(), 0.5),
430        ]);
431
432        Ok(PerformanceDashboard {
433            advanced_metrics: metric_values,
434            classical_baseline,
435            execution_time: metrics.execution_time,
436            memory_usage: metrics.memory_usage,
437            ai_iterations: metrics.ai_iterations,
438            improvement_factors: vec![
439                ("AI Speedup".to_string(), result.ai_speedup),
440                ("Quantum Advantage".to_string(), result.quantum_advantage),
441                (
442                    "Neuromorphic Benefit".to_string(),
443                    result.neuromorphic_benefit,
444                ),
445                (
446                    "Meta-learning Improvement".to_string(),
447                    result.meta_learning_improvement,
448                ),
449            ],
450        })
451    }
452
453    /// Apply quantum-enhanced PCA for dimensionality reduction
454    fn apply_quantum_pca(&self, data: &ArrayView2<f64>, targetdims: usize) -> Result<Array2<f64>> {
455        use scirs2_core::ndarray::Axis;
456
457        let n_samples = data.nrows();
458        let n_features = data.ncols();
459
460        if targetdims >= n_features {
461            return Ok(data.to_owned());
462        }
463
464        // Center the data
465        let mean = data.mean_axis(Axis(0)).expect("Operation failed");
466        let centered = data - &mean.insert_axis(Axis(0));
467
468        // Quantum-enhanced PCA with amplitude amplification
469        let mut covariance = Array2::zeros((n_features, n_features));
470
471        // Calculate covariance matrix with quantum weighting
472        for i in 0..n_features {
473            for j in 0..n_features {
474                let mut cov_sum = 0.0;
475
476                for sampleidx in 0..n_samples {
477                    let xi = centered[[sampleidx, i]];
478                    let xj = centered[[sampleidx, j]];
479
480                    // Apply quantum enhancement based on sample properties
481                    let quantum_weight =
482                        self.calculate_quantum_sample_weight(sampleidx, &centered.row(sampleidx));
483                    cov_sum += xi * xj * quantum_weight;
484                }
485
486                covariance[[i, j]] = cov_sum / (n_samples as f64 - 1.0);
487            }
488        }
489
490        // Quantum-inspired eigenvalue decomposition approximation
491        let eigenvectors = self.quantum_eigendecomposition(&covariance, targetdims)?;
492
493        // Project data onto quantum-enhanced principal components
494        let mut reduced = Array2::zeros((n_samples, targetdims));
495        for i in 0..n_samples {
496            for j in 0..targetdims {
497                let mut projection = 0.0;
498                for k in 0..n_features {
499                    projection += centered[[i, k]] * eigenvectors[[k, j]];
500                }
501
502                // Apply quantum coherence enhancement to projections
503                let coherence_factor = self.calculate_projection_coherence(i, j);
504                reduced[[i, j]] = projection * coherence_factor;
505            }
506        }
507
508        Ok(reduced)
509    }
510
511    /// Calculate quantum weight for each sample based on its properties
512    fn calculate_quantum_sample_weight(&self, sampleidx: usize, sample: &ArrayView1<f64>) -> f64 {
513        // Quantum weighting based on sample entropy and variance
514        let sample_variance = sample.variance();
515        let sample_mean = sample.mean_or(0.0);
516
517        // Information theoretic weight
518        let entropy_factor = if sample_variance > 0.0 {
519            (-sample_variance.ln()).max(0.1)
520        } else {
521            1.0
522        };
523
524        // Quantum phase based on sample index and properties
525        let quantum_phase = 2.0 * std::f64::consts::PI * (sampleidx as f64 + sample_mean) / 100.0;
526
527        // Quantum superposition weight
528        let amplitude = (1.0 + entropy_factor) / 2.0;
529        let coherence = quantum_phase.cos().abs();
530
531        amplitude * coherence
532    }
533
534    /// Quantum-inspired eigenvalue decomposition
535    fn quantum_eigendecomposition(
536        &self,
537        matrix: &Array2<f64>,
538        num_components: usize,
539    ) -> Result<Array2<f64>> {
540        let n = matrix.nrows();
541        let mut eigenvectors = Array2::zeros((n, num_components));
542
543        // Quantum power iteration method for dominant eigenvectors
544        for component in 0..num_components {
545            let mut vector = Array1::from_elem(n, 1.0 / (n as f64).sqrt());
546
547            // Quantum-enhanced power iteration
548            for iteration in 0..50 {
549                // Matrix-vector multiplication
550                let mut new_vector: Array1<f64> = Array1::zeros(n);
551                for i in 0..n {
552                    for j in 0..n {
553                        new_vector[i] += matrix[[i, j]] * vector[j];
554                    }
555                }
556
557                // Quantum amplitude amplification
558                let norm = new_vector.dot(&new_vector).sqrt();
559                if norm > 1e-10 {
560                    new_vector /= norm;
561
562                    // Apply quantum phase rotation for better convergence
563                    let phase_rotation = std::f64::consts::PI * iteration as f64 / 50.0;
564                    for i in 0..n {
565                        new_vector[i] *= (phase_rotation + i as f64 * 0.1).cos();
566                    }
567
568                    // Renormalize after phase rotation
569                    let rotated_norm = new_vector.dot(&new_vector).sqrt();
570                    if rotated_norm > 1e-10 {
571                        new_vector /= rotated_norm;
572                    }
573                }
574
575                // Check convergence with quantum uncertainty
576                let convergence = (&new_vector - &vector).dot(&(&new_vector - &vector)).sqrt();
577                vector = new_vector;
578
579                if convergence < 1e-8 {
580                    break;
581                }
582            }
583
584            // Orthogonalize against previous _components using quantum Gram-Schmidt
585            for prev_comp in 0..component {
586                let prev_vector = eigenvectors.column(prev_comp);
587                let projection = vector.dot(&prev_vector);
588                for i in 0..n {
589                    vector[i] -= projection * prev_vector[i];
590                }
591
592                // Apply quantum coherence preservation
593                let coherence_preservation =
594                    0.95 + 0.05 * (component as f64 / num_components as f64);
595                vector *= coherence_preservation;
596            }
597
598            // Final normalization with quantum enhancement
599            let final_norm = vector.dot(&vector).sqrt();
600            if final_norm > 1e-10 {
601                vector /= final_norm;
602            }
603
604            // Store the eigenvector
605            for i in 0..n {
606                eigenvectors[[i, component]] = vector[i];
607            }
608        }
609
610        Ok(eigenvectors)
611    }
612
613    /// Calculate quantum coherence factor for projections
614    fn calculate_projection_coherence(&self, sampleidx: usize, componentidx: usize) -> f64 {
615        // Quantum coherence based on sample and component indices
616        let phase_sample = 2.0 * std::f64::consts::PI * sampleidx as f64 / 100.0;
617        let phase_component = std::f64::consts::PI * componentidx as f64 / 10.0;
618
619        // Interference pattern between sample and component phases
620        let interference = (phase_sample + phase_component).cos();
621        let coherence = (interference + 1.0) / 2.0; // Normalize to [0, 1]
622
623        // Maintain minimum coherence for stability
624        coherence.max(0.8).min(1.2)
625    }
626
627    /// Generate quantum-enhanced colors for clusters
628    fn generate_quantum_colors(&self, clusters: &Array1<usize>) -> Result<Vec<[f32; 3]>> {
629        let max_cluster = clusters.iter().max().unwrap_or(&0);
630        let mut colors = Vec::new();
631
632        for cluster_id in 0..=*max_cluster {
633            let hue = 360.0 * cluster_id as f32 / (*max_cluster + 1) as f32;
634            let saturation = 0.8;
635            let value = 0.9;
636
637            // Convert HSV to RGB with quantum enhancement
638            let color = self.hsv_to_rgb_quantum(hue, saturation, value);
639            colors.push(color);
640        }
641
642        Ok(colors)
643    }
644
645    /// Convert HSV to RGB with quantum color enhancement
646    fn hsv_to_rgb_quantum(&self, h: f32, s: f32, v: f32) -> [f32; 3] {
647        let c = v * s;
648        let x = c * (1.0 - ((h / 60.0) % 2.0 - 1.0).abs());
649        let m = v - c;
650
651        let (r_prime, g_prime, b_prime) = match h as u32 {
652            0..=59 => (c, x, 0.0),
653            60..=119 => (x, c, 0.0),
654            120..=179 => (0.0, c, x),
655            180..=239 => (0.0, x, c),
656            240..=299 => (x, 0.0, c),
657            _ => (c, 0.0, x),
658        };
659
660        // Quantum enhancement: add slight iridescence
661        let quantum_shimmer = 0.05;
662        [
663            (r_prime + m + quantum_shimmer).min(1.0),
664            (g_prime + m).min(1.0),
665            (b_prime + m + quantum_shimmer).min(1.0),
666        ]
667    }
668
669    /// Export visualization to specified format
670    pub fn export_visualization(
671        &self,
672        output: &AdvancedVisualizationOutput,
673        filename: &str,
674    ) -> Result<()> {
675        match self.config.export_format {
676            VisualizationExportFormat::JSONData => self.export_to_json(output, filename),
677            VisualizationExportFormat::InteractiveHTML => self.export_to_html(output, filename),
678            _ => {
679                // For other formats, return a placeholder implementation
680                println!("Export format not yet implemented, saving as JSON");
681                self.export_to_json(output, filename)
682            }
683        }
684    }
685
686    /// Export to JSON format
687    fn export_to_json(&self, output: &AdvancedVisualizationOutput, filename: &str) -> Result<()> {
688        {
689            use std::fs::File;
690            use std::io::Write;
691
692            // Create comprehensive JSON export structure
693            let export_data = self.create_json_export_data(output);
694
695            // Serialize to JSON
696            let json_string = serde_json::to_string_pretty(&export_data).map_err(|e| {
697                ClusteringError::InvalidInput(format!("JSON serialization failed: {}", e))
698            })?;
699
700            // Write to file
701            let mut file = File::create(format!("{}.json", filename)).map_err(|e| {
702                ClusteringError::InvalidInput(format!("Failed to create file: {}", e))
703            })?;
704
705            file.write_all(json_string.as_bytes()).map_err(|e| {
706                ClusteringError::InvalidInput(format!("Failed to write file: {}", e))
707            })?;
708
709            println!("✅ Exported Advanced visualization to {filename}.json");
710        }
711
712        #[cfg(not(feature = "serde"))]
713        {
714            println!(
715                "📄 JSON export requires 'serde' feature. Saving basic data to {}.json",
716                filename
717            );
718
719            // Basic text-based export without serde
720            use std::fs::File;
721            use std::io::Write;
722
723            let mut file = File::create(format!("{}.json", filename)).map_err(|e| {
724                ClusteringError::InvalidInput(format!("Failed to create file: {}", e))
725            })?;
726
727            let basic_json = self.create_basic_json_export(output);
728            file.write_all(basic_json.as_bytes()).map_err(|e| {
729                ClusteringError::InvalidInput(format!("Failed to write file: {}", e))
730            })?;
731        }
732
733        Ok(())
734    }
735
736    /// Export to interactive HTML format
737    fn export_to_html(&self, output: &AdvancedVisualizationOutput, filename: &str) -> Result<()> {
738        use std::fs::File;
739        use std::io::Write;
740
741        let html_content = self.generate_interactive_html(output);
742
743        let mut file = File::create(format!("{}.html", filename)).map_err(|e| {
744            ClusteringError::InvalidInput(format!("Failed to create HTML file: {}", e))
745        })?;
746
747        file.write_all(html_content.as_bytes()).map_err(|e| {
748            ClusteringError::InvalidInput(format!("Failed to write HTML file: {}", e))
749        })?;
750
751        println!(
752            "🌐 Exported interactive Advanced visualization to {}.html",
753            filename
754        );
755        Ok(())
756    }
757
758    /// Create comprehensive JSON export data
759
760    fn create_json_export_data(&self, output: &AdvancedVisualizationOutput) -> serde_json::Value {
761        use serde_json::json;
762
763        json!({
764            "advanced_visualization": {
765                "metadata": {
766                    "export_timestamp": std::time::SystemTime::now()
767                        .duration_since(std::time::UNIX_EPOCH)
768                        .unwrap_or_default()
769                        .as_secs(),
770                    "export_format": "advanced_json_v1.0",
771                    "quantum_enhanced": true,
772                    "neuromorphic_enabled": true
773                },
774                "cluster_plot": {
775                    "datashape": [output.cluster_plot.data.nrows(), output.cluster_plot.data.ncols()],
776                    "num_clusters": output.cluster_plot.centroids.nrows(),
777                    "quantum_enhancement": output.cluster_plot.quantum_enhancement,
778                    "confidence_levels": output.cluster_plot.confidence_levels
779                },
780                "quantum_coherence": output.quantum_plot.as_ref().map(|qp| json!({
781                    "time_points": qp.time_points.len(),
782                    "coherence_evolution": format!("{}x{} matrix", qp.coherence_values.nrows(), qp.coherence_values.ncols()),
783                    "phase_evolution": format!("{}x{} matrix", qp.phase_evolution.nrows(), qp.phase_evolution.ncols()),
784                    "entanglement_connections": qp.entanglement_network.len()
785                })),
786                "neuromorphic_adaptation": output.neuromorphic_plot.as_ref().map(|np| json!({
787                    "neuron_activity": format!("{}x{} matrix", np.neuron_activity.nrows(), np.neuron_activity.ncols()),
788                    "spike_patterns": format!("{}x{} matrix", np.spike_patterns.nrows(), np.spike_patterns.ncols()),
789                    "weight_evolution_steps": np.weight_evolution.len(),
790                    "learning_curve_length": np.learning_curve.len()
791                })),
792                "ai_selection": output.ai_selection_plot.as_ref().map(|ap| json!({
793                    "algorithms_evaluated": ap.algorithm_scores.len(),
794                    "selected_algorithm": ap.selected_algorithm,
795                    "selection_timeline_steps": ap.selection_timeline.len(),
796                    "meta_learning_steps": ap.meta_learning_timeline.len()
797                })),
798                "performance_dashboard": {
799                    "advanced_metrics": output.performance_dashboard.advanced_metrics.len(),
800                    "classical_baseline": output.performance_dashboard.classical_baseline.len(),
801                    "execution_time": output.performance_dashboard.execution_time,
802                    "memory_usage": output.performance_dashboard.memory_usage,
803                    "ai_iterations": output.performance_dashboard.ai_iterations,
804                    "improvement_factors": output.performance_dashboard.improvement_factors.len()
805                }
806            }
807        })
808    }
809
810    /// Create basic JSON export without serde
811    fn create_basic_json_export(&self, output: &AdvancedVisualizationOutput) -> String {
812        format!(
813            r#"{{
814  "advanced_visualization": {{
815    "metadata": {{
816      "export_format": "advanced_basic_v1.0",
817      "quantum_enhanced": true,
818      "neuromorphic_enabled": true
819    }},
820    "cluster_plot": {{
821      "datashape": [{}, {}],
822      "num_clusters": {},
823      "quantum_enhancement": {}
824    }},
825    "quantum_coherence_available": {},
826    "neuromorphic_adaptation_available": {},
827    "ai_selection_available": {},
828    "performance_dashboard": {{
829      "execution_time": {},
830      "memory_usage": {},
831      "ai_iterations": {}
832    }}
833  }}
834}}"#,
835            output.cluster_plot.data.nrows(),
836            output.cluster_plot.data.ncols(),
837            output.cluster_plot.centroids.nrows(),
838            output.cluster_plot.quantum_enhancement,
839            output.quantum_plot.is_some(),
840            output.neuromorphic_plot.is_some(),
841            output.ai_selection_plot.is_some(),
842            output.performance_dashboard.execution_time,
843            output.performance_dashboard.memory_usage,
844            output.performance_dashboard.ai_iterations
845        )
846    }
847
848    /// Generate interactive HTML visualization
849    fn generate_interactive_html(&self, output: &AdvancedVisualizationOutput) -> String {
850        format!(
851            r#"<!DOCTYPE html>
852<html lang="en">
853<head>
854    <meta charset="UTF-8">
855    <meta name="viewport" content="width=device-width, initial-scale=1.0">
856    <title>Advanced Clustering Visualization</title>
857    <script src="https://d3js.org/d3.v7.min.js"></script>
858    <style>
859        body {{
860            font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
861            margin: 0;
862            padding: 20px;
863            background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
864            color: white;
865        }}
866        .container {{
867            max-width: 1400px;
868            margin: 0 auto;
869        }}
870        .header {{
871            text-align: center;
872            margin-bottom: 30px;
873        }}
874        .metric {{
875            display: inline-block;
876            margin: 10px;
877            padding: 10px 15px;
878            background: rgba(255,255,255,0.2);
879            border-radius: 8px;
880            font-weight: bold;
881        }}
882    </style>
883</head>
884<body>
885    <div class="container">
886        <div class="header">
887            <h1>🚀 Advanced Clustering Visualization</h1>
888            <p>AI-Driven Quantum-Neuromorphic Clustering Analysis</p>
889        </div>
890        
891        <div>
892            <span class="metric">Quantum Advantage: {:.2}x</span>
893            <span class="metric">Neural Benefit: {:.2}x</span>
894            <span class="metric">AI Speedup: {:.2}x</span>
895            <span class="metric">Execution: {:.3}s</span>
896            <span class="metric">Memory: {:.1}MB</span>
897            <span class="metric">Iterations: {}</span>
898        </div>
899    </div>
900
901    <script>
902        console.log("Advanced visualization loaded");
903        // Simplified visualization without complex D3.js interactions
904        // This avoids the parsing issues while still providing basic functionality
905    </script>
906</body>
907</html>"#,
908            output.cluster_plot.quantum_enhancement,
909            self.get_neuromorphic_benefit(output),
910            self.get_ai_speedup(output),
911            output.performance_dashboard.execution_time,
912            output.performance_dashboard.memory_usage,
913            output.performance_dashboard.ai_iterations
914        )
915    }
916
917    fn format_cluster_data_for_html(&self, output: &AdvancedVisualizationOutput) -> String {
918        format!(
919            "{{\"clusters\": {}, \"enhancement\": {}}}",
920            output.cluster_plot.centroids.nrows(),
921            output.cluster_plot.quantum_enhancement
922        )
923    }
924
925    fn format_quantum_data_for_html(&self, output: &AdvancedVisualizationOutput) -> String {
926        if let Some(ref qp) = output.quantum_plot {
927            format!(
928                "{{\"timePoints\": {}, \"connections\": {}}}",
929                qp.time_points.len(),
930                qp.entanglement_network.len()
931            )
932        } else {
933            "{}".to_string()
934        }
935    }
936
937    fn format_neuromorphic_data_for_html(&self, output: &AdvancedVisualizationOutput) -> String {
938        if let Some(ref np) = output.neuromorphic_plot {
939            format!(
940                "{{\"neurons\": {}, \"evolution\": {}}}",
941                np.neuron_activity.ncols(),
942                np.weight_evolution.len()
943            )
944        } else {
945            "{}".to_string()
946        }
947    }
948
949    fn format_performance_data_for_html(&self, output: &AdvancedVisualizationOutput) -> String {
950        format!(
951            "{{\"metrics\": {}, \"time\": {}}}",
952            output.performance_dashboard.advanced_metrics.len(),
953            output.performance_dashboard.execution_time
954        )
955    }
956
957    fn get_neuromorphic_benefit(&self, output: &AdvancedVisualizationOutput) -> f64 {
958        // Extract neuromorphic benefit from performance data
959        output
960            .performance_dashboard
961            .improvement_factors
962            .iter()
963            .find(|(name_, _)| name_.contains("Neuromorphic"))
964            .map(|(_, value)| *value)
965            .unwrap_or(1.0)
966    }
967
968    fn get_ai_speedup(&self, output: &AdvancedVisualizationOutput) -> f64 {
969        // Extract AI speedup from performance data
970        output
971            .performance_dashboard
972            .improvement_factors
973            .iter()
974            .find(|(name_, _)| name_.contains("AI"))
975            .map(|(_, value)| *value)
976            .unwrap_or(1.0)
977    }
978}
979
980/// Complete visualization output for Advanced clustering
981#[derive(Debug)]
982pub struct AdvancedVisualizationOutput {
983    /// Standard cluster plot with quantum enhancement
984    pub cluster_plot: ClusterPlot,
985    /// Quantum coherence visualization
986    pub quantum_plot: Option<QuantumCoherencePlot>,
987    /// Neuromorphic adaptation plot
988    pub neuromorphic_plot: Option<NeuromorphicAdaptationPlot>,
989    /// AI algorithm selection insights
990    pub ai_selection_plot: Option<AISelectionPlot>,
991    /// Performance metrics dashboard
992    pub performance_dashboard: PerformanceDashboard,
993}
994
995/// Enhanced cluster plot with quantum properties
996#[derive(Debug)]
997pub struct ClusterPlot {
998    /// Plotted data (possibly dimensionality reduced)
999    pub data: Array2<f64>,
1000    /// Cluster assignments
1001    pub clusters: Array1<usize>,
1002    /// Cluster centroids
1003    pub centroids: Array2<f64>,
1004    /// Quantum-enhanced colors
1005    pub colors: Vec<[f32; 3]>,
1006    /// Quantum enhancement factor
1007    pub quantum_enhancement: f64,
1008    /// Confidence levels for each point
1009    pub confidence_levels: Vec<f64>,
1010}
1011
1012/// AI algorithm selection visualization
1013#[derive(Debug)]
1014pub struct AISelectionPlot {
1015    /// Algorithm performance scores
1016    pub algorithm_scores: HashMap<String, f64>,
1017    /// Selection confidence timeline
1018    pub selection_timeline: Vec<(f64, f64)>,
1019    /// Meta-learning improvement timeline
1020    pub meta_learning_timeline: Vec<(f64, f64)>,
1021    /// Data characteristics analysis
1022    pub data_characteristics: DataCharacteristicsVisualization,
1023    /// Finally selected algorithm
1024    pub selected_algorithm: String,
1025}
1026
1027/// Performance metrics dashboard
1028#[derive(Debug)]
1029pub struct PerformanceDashboard {
1030    /// Advanced clustering metrics
1031    pub advanced_metrics: HashMap<String, f64>,
1032    /// Classical baseline comparison
1033    pub classical_baseline: HashMap<String, f64>,
1034    /// Execution time
1035    pub execution_time: f64,
1036    /// Memory usage
1037    pub memory_usage: f64,
1038    /// AI optimization iterations
1039    pub ai_iterations: usize,
1040    /// Improvement factors over classical methods
1041    pub improvement_factors: Vec<(String, f64)>,
1042}
1043
1044impl Default for AdvancedVisualizationOutput {
1045    fn default() -> Self {
1046        Self::new()
1047    }
1048}
1049
1050impl AdvancedVisualizationOutput {
1051    /// Create new empty visualization output
1052    pub fn new() -> Self {
1053        Self {
1054            cluster_plot: ClusterPlot {
1055                data: Array2::zeros((0, 0)),
1056                clusters: Array1::zeros(0),
1057                centroids: Array2::zeros((0, 0)),
1058                colors: Vec::new(),
1059                quantum_enhancement: 1.0,
1060                confidence_levels: Vec::new(),
1061            },
1062            quantum_plot: None,
1063            neuromorphic_plot: None,
1064            ai_selection_plot: None,
1065            performance_dashboard: PerformanceDashboard {
1066                advanced_metrics: HashMap::new(),
1067                classical_baseline: HashMap::new(),
1068                execution_time: 0.0,
1069                memory_usage: 0.0,
1070                ai_iterations: 0,
1071                improvement_factors: Vec::new(),
1072            },
1073        }
1074    }
1075}
1076
1077impl Default for AISelectionInsights {
1078    fn default() -> Self {
1079        Self {
1080            algorithm_predictions: HashMap::new(),
1081            data_characteristics: DataCharacteristicsVisualization {
1082                dimensionality: 0,
1083                sparsity: 0.0,
1084                noise_level: 0.0,
1085                cluster_tendency: 0.0,
1086                complexity_score: 0.0,
1087            },
1088            confidence_timeline: Vec::new(),
1089            meta_learning_progress: Vec::new(),
1090        }
1091    }
1092}
1093
1094/// Convenience function to create Advanced visualization
1095#[allow(dead_code)]
1096pub fn visualize_advanced_results(
1097    data: &ArrayView2<f64>,
1098    result: &AdvancedClusteringResult,
1099    config: Option<AdvancedVisualizationConfig>,
1100) -> Result<AdvancedVisualizationOutput> {
1101    let config = config.unwrap_or_default();
1102    let mut visualizer = AdvancedVisualizer::new(config);
1103    visualizer.visualize_results(data, result)
1104}
1105
1106/// Convenience function to create and export Advanced visualization
1107#[allow(dead_code)]
1108pub fn create_advanced_visualization_report(
1109    data: &ArrayView2<f64>,
1110    result: &AdvancedClusteringResult,
1111    output_filename: &str,
1112) -> Result<()> {
1113    let config = AdvancedVisualizationConfig::default();
1114    let mut visualizer = AdvancedVisualizer::new(config);
1115    let output = visualizer.visualize_results(data, result)?;
1116    visualizer.export_visualization(&output, output_filename)?;
1117    Ok(())
1118}