1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
use std::future::Future;
use std::pin::Pin;
use std::sync::atomic::AtomicUsize;
use std::sync::atomic::Ordering::{AcqRel, Relaxed};
use std::sync::{Condvar, Mutex};
use std::task::{Context, Poll, Waker};
/// `ASYNC` is a flag indicating that the referenced instance corresponds to an asynchronous
/// operation.
const ASYNC: usize = 1_usize;
/// [`WaitQueue`] implements an unfair wait queue.
///
/// The sole purpose of the data structure is to avoid busy-waiting.
#[derive(Debug, Default)]
pub(crate) struct WaitQueue {
    /// Stores the pointer value of the actual wait queue entry and a flag indicating that the
    /// entry is asynchronous.
    wait_queue: AtomicUsize,
}
impl WaitQueue {
    /// Waits for the condition to be met or signaled.
    #[inline]
    pub(crate) fn wait_sync<T, F: FnOnce() -> Result<T, ()>>(&self, f: F) -> Result<T, ()> {
        let mut current = self.wait_queue.load(Relaxed);
        let mut entry = SyncWait::new(current);
        let mut entry_mut = Pin::new(&mut entry);
        while let Err(actual) = self.wait_queue.compare_exchange_weak(
            current,
            entry_mut.as_mut().get_mut() as *mut SyncWait as usize,
            AcqRel,
            Relaxed,
        ) {
            current = actual;
            entry_mut.next = current;
        }
        // Execute the closure.
        let result = f();
        if result.is_ok() {
            self.signal();
        }
        entry_mut.wait();
        result
    }
    /// Pushes an [`AsyncWait`] into the [`WaitQueue`].
    ///
    /// If it happens to acquire the desired resource, it returns an `Ok(T)` after waking up all
    /// the entries in the [`WaitQueue`].
    #[inline]
    pub(crate) fn push_async_entry<T, F: FnOnce() -> Result<T, ()>>(
        &self,
        async_wait: &mut AsyncWait,
        f: F,
    ) -> Result<T, ()> {
        debug_assert!(async_wait.mutex.is_none());
        let mut current = self.wait_queue.load(Relaxed);
        async_wait.next = current;
        async_wait.mutex.replace(Mutex::new((false, None)));
        while let Err(actual) = self.wait_queue.compare_exchange_weak(
            current,
            (async_wait as *mut AsyncWait as usize) | ASYNC,
            AcqRel,
            Relaxed,
        ) {
            current = actual;
            async_wait.next = current;
        }
        // Execute the closure.
        if let Ok(result) = f() {
            self.signal();
            if async_wait.try_wait() {
                async_wait.mutex.take();
                return Ok(result);
            }
            // Another task is waking up `async_wait`: dispose of `result` which is holding the
            // desired resource.
        }
        // The caller has to await.
        Err(())
    }
    /// Signals the threads in the wait queue.
    #[inline]
    pub(crate) fn signal(&self) {
        let mut current = self.wait_queue.swap(0, AcqRel);
        while (current & (!ASYNC)) != 0 {
            current = if (current & ASYNC) == 0 {
                // Synchronous.
                let entry_ref = unsafe { &*(current as *mut SyncWait) };
                let next = entry_ref.next;
                entry_ref.signal();
                next
            } else {
                // Asynchronous.
                let entry_ref = unsafe { &*((current & (!ASYNC)) as *mut AsyncWait) };
                let next = entry_ref.next;
                entry_ref.signal();
                next
            };
        }
    }
}
/// [`DeriveAsyncWait`] derives a mutable reference to [`AsyncWait`].
pub(crate) trait DeriveAsyncWait {
    /// Returns a mutable reference to [`AsyncWait`] if available.
    fn derive(&mut self) -> Option<&mut AsyncWait>;
}
impl DeriveAsyncWait for Pin<&mut AsyncWait> {
    #[inline]
    fn derive(&mut self) -> Option<&mut AsyncWait> {
        unsafe { Some(self.as_mut().get_unchecked_mut()) }
    }
}
impl DeriveAsyncWait for () {
    #[inline]
    fn derive(&mut self) -> Option<&mut AsyncWait> {
        None
    }
}
/// [`AsyncWait`] is inserted into [`WaitQueue`] for the caller to await until woken up.
///
/// [`AsyncWait`] has to be pinned outside in order to use it correctly. The type is `Unpin`,
/// therefore it can be moved, however the [`DeriveAsyncWait`] trait forces [`AsyncWait`] to be
/// pinned.
#[derive(Debug, Default)]
pub(crate) struct AsyncWait {
    next: usize,
    mutex: Option<Mutex<(bool, Option<Waker>)>>,
}
impl AsyncWait {
    /// Sends a signal.
    fn signal(&self) {
        if let Some(mutex) = self.mutex.as_ref() {
            if let Ok(mut locked) = mutex.lock() {
                locked.0 = true;
                if let Some(waker) = locked.1.take() {
                    waker.wake();
                }
            }
        } else {
            unreachable!();
        }
    }
    /// Tries to receive a signal.
    fn try_wait(&self) -> bool {
        if let Some(mutex) = self.mutex.as_ref() {
            if let Ok(locked) = mutex.lock() {
                if locked.0 {
                    return true;
                }
            }
        }
        false
    }
}
impl Future for AsyncWait {
    type Output = ();
    #[inline]
    fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
        if let Some(mutex) = self.mutex.as_ref() {
            if let Ok(mut locked) = mutex.lock() {
                if locked.0 {
                    return Poll::Ready(());
                }
                locked.1.replace(cx.waker().clone());
            }
            Poll::Pending
        } else {
            Poll::Ready(())
        }
    }
}
/// [`SyncWait`] is inserted into [`WaitQueue`] for the caller to synchronously wait until
/// signaled.
#[derive(Debug)]
struct SyncWait {
    next: usize,
    condvar: Condvar,
    mutex: Mutex<bool>,
}
impl SyncWait {
    /// Creates a new [`SyncWait`].
    const fn new(next: usize) -> Self {
        #[allow(clippy::mutex_atomic)]
        Self {
            next,
            condvar: Condvar::new(),
            mutex: Mutex::new(false),
        }
    }
    /// Waits for a signal.
    fn wait(&self) {
        #[allow(clippy::mutex_atomic)]
        let mut completed = unsafe { self.mutex.lock().unwrap_unchecked() };
        while !*completed {
            completed = unsafe { self.condvar.wait(completed).unwrap_unchecked() };
        }
    }
    /// Sends a signal.
    fn signal(&self) {
        #[allow(clippy::mutex_atomic)]
        let mut completed = unsafe { self.mutex.lock().unwrap_unchecked() };
        *completed = true;
        self.condvar.notify_one();
    }
}