use super::ebr::{Arc, AtomicArc, Barrier, Tag};
use super::hash_table::bucket::{DataBlock, EntryPtr, Locker, Reader, BUCKET_LEN};
use super::hash_table::bucket_array::BucketArray;
use super::hash_table::HashTable;
use super::wait_queue::AsyncWait;
use std::borrow::Borrow;
use std::collections::hash_map::RandomState;
use std::fmt::{self, Debug};
use std::hash::{BuildHasher, Hash};
use std::mem::replace;
use std::pin::Pin;
use std::sync::atomic::Ordering::{Acquire, Relaxed};
use std::sync::atomic::{AtomicU8, AtomicUsize};
pub struct HashMap<K, V, H = RandomState>
where
K: Eq + Hash + Sync,
V: Sync,
H: BuildHasher,
{
array: AtomicArc<BucketArray<K, V, false>>,
minimum_capacity: usize,
additional_capacity: AtomicUsize,
resize_mutex: AtomicU8,
build_hasher: H,
}
pub enum Entry<'h, K, V, H>
where
K: Eq + Hash + Sync,
V: Sync,
H: BuildHasher,
{
Occupied(OccupiedEntry<'h, K, V, H>),
Vacant(VacantEntry<'h, K, V, H>),
}
pub struct OccupiedEntry<'h, K, V, H>
where
K: Eq + Hash + Sync,
V: Sync,
H: BuildHasher,
{
hashmap: &'h HashMap<K, V, H>,
hash: u64,
data_block: &'h DataBlock<K, V, BUCKET_LEN>,
locker: Locker<'h, K, V, false>,
entry_ptr: EntryPtr<'h, K, V, false>,
}
pub struct VacantEntry<'h, K, V, H>
where
K: Eq + Hash + Sync,
V: Sync,
H: BuildHasher,
{
hashmap: &'h HashMap<K, V, H>,
key: K,
hash: u64,
data_block: &'h DataBlock<K, V, BUCKET_LEN>,
locker: Locker<'h, K, V, false>,
}
pub struct Ticket<'h, K, V, H>
where
K: Eq + Hash + Sync,
V: Sync,
H: BuildHasher,
{
hashmap: &'h HashMap<K, V, H>,
increment: usize,
}
impl<K, V, H> HashMap<K, V, H>
where
K: Eq + Hash + Sync,
V: Sync,
H: BuildHasher,
{
#[inline]
pub fn with_hasher(build_hasher: H) -> HashMap<K, V, H> {
HashMap {
array: AtomicArc::from(unsafe {
Arc::new_unchecked(BucketArray::<K, V, false>::new(
Self::DEFAULT_CAPACITY,
AtomicArc::null(),
))
}),
minimum_capacity: Self::DEFAULT_CAPACITY,
additional_capacity: AtomicUsize::new(0),
resize_mutex: AtomicU8::new(0),
build_hasher,
}
}
#[inline]
pub fn with_capacity_and_hasher(capacity: usize, build_hasher: H) -> HashMap<K, V, H> {
let initial_capacity = capacity.max(Self::DEFAULT_CAPACITY);
let array = unsafe {
Arc::new_unchecked(BucketArray::<K, V, false>::new(
initial_capacity,
AtomicArc::null(),
))
};
let current_capacity = array.num_entries();
HashMap {
array: AtomicArc::from(array),
minimum_capacity: current_capacity,
additional_capacity: AtomicUsize::new(0),
resize_mutex: AtomicU8::new(0),
build_hasher,
}
}
#[inline]
pub fn reserve(&self, capacity: usize) -> Option<Ticket<K, V, H>> {
let mut current_additional_capacity = self.additional_capacity.load(Relaxed);
loop {
if usize::MAX - self.minimum_capacity - current_additional_capacity <= capacity {
return None;
}
match self.additional_capacity.compare_exchange(
current_additional_capacity,
current_additional_capacity + capacity,
Relaxed,
Relaxed,
) {
Ok(_) => {
self.resize(&Barrier::new());
return Some(Ticket {
hashmap: self,
increment: capacity,
});
}
Err(current) => current_additional_capacity = current,
}
}
}
#[inline]
pub fn entry(&self, key: K) -> Entry<K, V, H> {
let barrier = Barrier::new();
let hash = self.hash(key.borrow());
let (locker, data_block, entry_ptr) = unsafe {
self.acquire_entry(
key.borrow(),
hash,
&mut (),
self.prolonged_barrier_ref(&barrier),
)
.ok()
.unwrap_unchecked()
};
if entry_ptr.is_valid() {
Entry::Occupied(OccupiedEntry {
hashmap: self,
hash,
data_block,
locker,
entry_ptr,
})
} else {
Entry::Vacant(VacantEntry {
hashmap: self,
key,
hash,
data_block,
locker,
})
}
}
#[inline]
pub async fn entry_async(&self, key: K) -> Entry<K, V, H> {
let hash = self.hash(key.borrow());
loop {
let mut async_wait = AsyncWait::default();
let mut async_wait_pinned = Pin::new(&mut async_wait);
let barrier = Barrier::new();
if let Ok((locker, data_block, entry_ptr)) = self.acquire_entry(
key.borrow(),
hash,
&mut async_wait_pinned,
self.prolonged_barrier_ref(&barrier),
) {
if entry_ptr.is_valid() {
return Entry::Occupied(OccupiedEntry {
hashmap: self,
hash,
data_block,
locker,
entry_ptr,
});
}
return Entry::Vacant(VacantEntry {
hashmap: self,
key,
hash,
data_block,
locker,
});
}
async_wait_pinned.await;
}
}
#[inline]
pub fn insert(&self, key: K, val: V) -> Result<(), (K, V)> {
let barrier = Barrier::new();
let hash = self.hash(key.borrow());
if let Ok(Some((k, v))) = self.insert_entry(key, val, hash, &mut (), &barrier) {
Err((k, v))
} else {
Ok(())
}
}
#[inline]
pub async fn insert_async(&self, mut key: K, mut val: V) -> Result<(), (K, V)> {
let hash = self.hash(key.borrow());
loop {
let mut async_wait = AsyncWait::default();
let mut async_wait_pinned = Pin::new(&mut async_wait);
match self.insert_entry(key, val, hash, &mut async_wait_pinned, &Barrier::new()) {
Ok(Some(returned)) => return Err(returned),
Ok(None) => return Ok(()),
Err(returned) => {
key = returned.0;
val = returned.1;
}
}
async_wait_pinned.await;
}
}
#[inline]
pub fn update<Q, U, R>(&self, key: &Q, updater: U) -> Option<R>
where
K: Borrow<Q>,
Q: Eq + Hash + ?Sized,
U: FnOnce(&K, &mut V) -> R,
{
let barrier = Barrier::new();
let (mut locker, data_block, mut entry_ptr) = self
.acquire_entry(key, self.hash(key.borrow()), &mut (), &barrier)
.ok()?;
if entry_ptr.is_valid() {
let (k, v) = entry_ptr.get_mut(data_block, &mut locker);
return Some(updater(k, v));
}
None
}
#[inline]
pub async fn update_async<Q, U, R>(&self, key: &Q, updater: U) -> Option<R>
where
K: Borrow<Q>,
Q: Eq + Hash + ?Sized,
U: FnOnce(&K, &mut V) -> R,
{
let hash = self.hash(key);
loop {
let mut async_wait = AsyncWait::default();
let mut async_wait_pinned = Pin::new(&mut async_wait);
if let Ok((mut locker, data_block, mut entry_ptr)) =
self.acquire_entry(key, hash, &mut async_wait_pinned, &Barrier::new())
{
if entry_ptr.is_valid() {
let (k, v) = entry_ptr.get_mut(data_block, &mut locker);
return Some(updater(k, v));
}
return None;
}
async_wait_pinned.await;
}
}
#[inline]
pub fn upsert<C: FnOnce() -> V, U: FnOnce(&K, &mut V)>(
&self,
key: K,
constructor: C,
updater: U,
) {
let barrier = Barrier::new();
let hash = self.hash(key.borrow());
if let Ok((mut locker, data_block, mut entry_ptr)) =
self.acquire_entry(&key, hash, &mut (), &barrier)
{
if entry_ptr.is_valid() {
let (k, v) = entry_ptr.get_mut(data_block, &mut locker);
updater(k, v);
return;
}
let val = constructor();
locker.insert_with(
data_block,
BucketArray::<K, V, false>::partial_hash(hash),
|| (key, val),
&barrier,
);
};
}
#[inline]
pub async fn upsert_async<C: FnOnce() -> V, U: FnOnce(&K, &mut V)>(
&self,
key: K,
constructor: C,
updater: U,
) {
let hash = self.hash(key.borrow());
loop {
let mut async_wait = AsyncWait::default();
let mut async_wait_pinned = Pin::new(&mut async_wait);
{
let barrier = Barrier::new();
if let Ok((mut locker, data_block, mut entry_ptr)) =
self.acquire_entry(&key, hash, &mut async_wait_pinned, &barrier)
{
if entry_ptr.is_valid() {
let (k, v) = entry_ptr.get_mut(data_block, &mut locker);
updater(k, v);
} else {
let val = constructor();
locker.insert_with(
data_block,
BucketArray::<K, V, false>::partial_hash(hash),
|| (key, val),
&barrier,
);
}
return;
};
}
async_wait_pinned.await;
}
}
#[inline]
pub fn remove<Q>(&self, key: &Q) -> Option<(K, V)>
where
K: Borrow<Q>,
Q: Eq + Hash + ?Sized,
{
self.remove_if(key, |_| true)
}
#[inline]
pub async fn remove_async<Q>(&self, key: &Q) -> Option<(K, V)>
where
K: Borrow<Q>,
Q: Eq + Hash + ?Sized,
{
self.remove_if_async(key, |_| true).await
}
#[inline]
pub fn remove_if<Q, F: FnOnce(&V) -> bool>(&self, key: &Q, condition: F) -> Option<(K, V)>
where
K: Borrow<Q>,
Q: Eq + Hash + ?Sized,
{
self.remove_entry(
key,
self.hash(key.borrow()),
condition,
Option::flatten,
&mut (),
&Barrier::new(),
)
.ok()
.flatten()
}
#[inline]
pub async fn remove_if_async<Q, F: FnOnce(&V) -> bool>(
&self,
key: &Q,
mut condition: F,
) -> Option<(K, V)>
where
K: Borrow<Q>,
Q: Eq + Hash + ?Sized,
{
let hash = self.hash(key);
loop {
let mut async_wait = AsyncWait::default();
let mut async_wait_pinned = Pin::new(&mut async_wait);
match self.remove_entry(
key,
hash,
condition,
Option::flatten,
&mut async_wait_pinned,
&Barrier::new(),
) {
Ok(r) => return r,
Err(c) => condition = c,
};
async_wait_pinned.await;
}
}
#[inline]
pub fn read<Q, R, F: FnOnce(&K, &V) -> R>(&self, key: &Q, reader: F) -> Option<R>
where
K: Borrow<Q>,
Q: Eq + Hash + ?Sized,
{
self.read_entry(key, self.hash(key), &mut (), &Barrier::new())
.ok()
.flatten()
.map(|(k, v)| reader(k, v))
}
#[inline]
pub async fn read_async<Q, R, F: FnOnce(&K, &V) -> R>(&self, key: &Q, reader: F) -> Option<R>
where
K: Borrow<Q>,
Q: Eq + Hash + ?Sized,
{
let hash = self.hash(key);
loop {
let mut async_wait = AsyncWait::default();
let mut async_wait_pinned = Pin::new(&mut async_wait);
if let Ok(result) = self.read_entry(key, hash, &mut async_wait_pinned, &Barrier::new())
{
return result.map(|(k, v)| reader(k, v));
}
async_wait_pinned.await;
}
}
#[inline]
pub fn contains<Q>(&self, key: &Q) -> bool
where
K: Borrow<Q>,
Q: Eq + Hash + ?Sized,
{
self.read(key, |_, _| ()).is_some()
}
#[inline]
pub async fn contains_async<Q>(&self, key: &Q) -> bool
where
K: Borrow<Q>,
Q: Eq + Hash + ?Sized,
{
self.read_async(key, |_, _| ()).await.is_some()
}
#[inline]
pub fn scan<F: FnMut(&K, &V)>(&self, mut scanner: F) {
self.any(|k, v| {
scanner(k, v);
false
});
}
#[inline]
pub async fn scan_async<F: FnMut(&K, &V)>(&self, mut scanner: F) {
self.any_async(|k, v| {
scanner(k, v);
false
})
.await;
}
#[inline]
pub fn any<P: FnMut(&K, &V) -> bool>(&self, mut pred: P) -> bool {
let barrier = Barrier::new();
let mut current_array_ptr = self.array.load(Acquire, &barrier);
while let Some(current_array) = current_array_ptr.as_ref() {
while !current_array.old_array(&barrier).is_null() {
if self.partial_rehash::<_, _, false>(current_array, &mut (), &barrier) == Ok(true)
{
break;
}
}
debug_assert!(current_array.old_array(&barrier).is_null());
for index in 0..current_array.num_buckets() {
let bucket = current_array.bucket(index);
if let Some(locker) = Reader::lock(bucket, &barrier) {
let data_block = current_array.data_block(index);
let mut entry_ptr = EntryPtr::new(&barrier);
while entry_ptr.next(locker.bucket(), &barrier) {
let (k, v) = entry_ptr.get(data_block);
if pred(k, v) {
return true;
}
}
}
}
let new_current_array_ptr = self.array.load(Acquire, &barrier);
if current_array_ptr == new_current_array_ptr {
break;
}
current_array_ptr = new_current_array_ptr;
}
false
}
#[inline]
pub async fn any_async<P: FnMut(&K, &V) -> bool>(&self, mut pred: P) -> bool {
let mut current_array_holder = self.array.get_arc(Acquire, &Barrier::new());
while let Some(current_array) = current_array_holder.take() {
while !current_array.old_array(&Barrier::new()).is_null() {
let mut async_wait = AsyncWait::default();
let mut async_wait_pinned = Pin::new(&mut async_wait);
if self.partial_rehash::<_, _, false>(
¤t_array,
&mut async_wait_pinned,
&Barrier::new(),
) == Ok(true)
{
break;
}
async_wait_pinned.await;
}
debug_assert!(current_array.old_array(&Barrier::new()).is_null());
for index in 0..current_array.num_buckets() {
let killed = loop {
let mut async_wait = AsyncWait::default();
let mut async_wait_pinned = Pin::new(&mut async_wait);
{
let barrier = Barrier::new();
let bucket = current_array.bucket(index);
if let Ok(reader) =
Reader::try_lock_or_wait(bucket, &mut async_wait_pinned, &barrier)
{
if let Some(reader) = reader {
let data_block = current_array.data_block(index);
let mut entry_ptr = EntryPtr::new(&barrier);
while entry_ptr.next(reader.bucket(), &barrier) {
let (k, v) = entry_ptr.get(data_block);
if pred(k, v) {
return true;
}
}
break false;
}
break true;
};
}
async_wait_pinned.await;
};
if killed {
break;
}
}
if let Some(new_current_array) = self.array.get_arc(Acquire, &Barrier::new()) {
if new_current_array.as_ptr() == current_array.as_ptr() {
break;
}
current_array_holder.replace(new_current_array);
continue;
}
break;
}
false
}
#[inline]
pub fn for_each<F: FnMut(&K, &mut V)>(&self, mut f: F) {
self.retain(|k, v| {
f(k, v);
true
});
}
#[inline]
pub async fn for_each_async<F: FnMut(&K, &mut V)>(&self, mut f: F) {
self.retain_async(|k, v| {
f(k, v);
true
})
.await;
}
#[inline]
pub fn retain<F: FnMut(&K, &mut V) -> bool>(&self, mut filter: F) -> (usize, usize) {
let mut num_retained: usize = 0;
let mut num_removed: usize = 0;
let barrier = Barrier::new();
let mut current_array_ptr = self.array.load(Acquire, &barrier);
while let Some(current_array) = current_array_ptr.as_ref() {
while !current_array.old_array(&barrier).is_null() {
if self.partial_rehash::<_, _, false>(current_array, &mut (), &barrier) == Ok(true)
{
break;
}
}
debug_assert!(current_array.old_array(&barrier).is_null());
for index in 0..current_array.num_buckets() {
let bucket = current_array.bucket_mut(index);
if let Some(mut locker) = Locker::lock(bucket, &barrier) {
let data_block = current_array.data_block(index);
let mut entry_ptr = EntryPtr::new(&barrier);
while entry_ptr.next(locker.bucket(), &barrier) {
let (k, v) = entry_ptr.get_mut(data_block, &mut locker);
if filter(k, v) {
num_retained = num_retained.saturating_add(1);
} else {
locker.erase(data_block, &mut entry_ptr);
num_removed = num_removed.saturating_add(1);
}
}
}
}
let new_current_array_ptr = self.array.load(Acquire, &barrier);
if current_array_ptr == new_current_array_ptr {
break;
}
num_retained = 0;
current_array_ptr = new_current_array_ptr;
}
if num_removed >= num_retained {
self.resize(&barrier);
}
(num_retained, num_removed)
}
#[inline]
pub async fn retain_async<F: FnMut(&K, &mut V) -> bool>(
&self,
mut filter: F,
) -> (usize, usize) {
let mut num_retained: usize = 0;
let mut num_removed: usize = 0;
let mut current_array_holder = self.array.get_arc(Acquire, &Barrier::new());
while let Some(current_array) = current_array_holder.take() {
while !current_array.old_array(&Barrier::new()).is_null() {
let mut async_wait = AsyncWait::default();
let mut async_wait_pinned = Pin::new(&mut async_wait);
if self.partial_rehash::<_, _, false>(
¤t_array,
&mut async_wait_pinned,
&Barrier::new(),
) == Ok(true)
{
break;
}
async_wait_pinned.await;
}
debug_assert!(current_array.old_array(&Barrier::new()).is_null());
for index in 0..current_array.num_buckets() {
let killed = loop {
let mut async_wait = AsyncWait::default();
let mut async_wait_pinned = Pin::new(&mut async_wait);
{
let barrier = Barrier::new();
let bucket = current_array.bucket_mut(index);
if let Ok(locker) =
Locker::try_lock_or_wait(bucket, &mut async_wait_pinned, &barrier)
{
if let Some(mut locker) = locker {
let data_block = current_array.data_block(index);
let mut entry_ptr = EntryPtr::new(&barrier);
while entry_ptr.next(locker.bucket(), &barrier) {
let (k, v) = entry_ptr.get_mut(data_block, &mut locker);
if filter(k, v) {
num_retained = num_retained.saturating_add(1);
} else {
locker.erase(data_block, &mut entry_ptr);
num_removed = num_removed.saturating_add(1);
}
}
break false;
}
break true;
};
}
async_wait_pinned.await;
};
if killed {
break;
}
}
if let Some(new_current_array) = self.array.get_arc(Acquire, &Barrier::new()) {
if new_current_array.as_ptr() == current_array.as_ptr() {
break;
}
num_retained = 0;
current_array_holder.replace(new_current_array);
continue;
}
break;
}
if num_removed >= num_retained {
self.resize(&Barrier::new());
}
(num_retained, num_removed)
}
#[inline]
pub fn clear(&self) -> usize {
self.retain(|_, _| false).1
}
#[inline]
pub async fn clear_async(&self) -> usize {
self.retain_async(|_, _| false).await.1
}
#[inline]
pub fn len(&self) -> usize {
self.num_entries(&Barrier::new())
}
#[inline]
pub fn is_empty(&self) -> bool {
self.len() == 0
}
#[inline]
pub fn capacity(&self) -> usize {
self.num_slots(&Barrier::new())
}
fn prolonged_barrier_ref<'h>(&'h self, barrier: &Barrier) -> &'h Barrier {
let _: &HashMap<_, _, _> = self;
unsafe { std::mem::transmute::<&Barrier, &'h Barrier>(barrier) }
}
}
impl<K, V, H> Clone for HashMap<K, V, H>
where
K: Clone + Eq + Hash + Sync,
V: Clone + Sync,
H: BuildHasher + Clone,
{
#[inline]
fn clone(&self) -> Self {
let cloned = Self::with_capacity_and_hasher(self.capacity(), self.hasher().clone());
self.scan(|k, v| {
let _reuslt = cloned.insert(k.clone(), v.clone());
});
cloned
}
}
impl<K, V, H> Debug for HashMap<K, V, H>
where
K: Debug + Eq + Hash + Sync,
V: Debug + Sync,
H: BuildHasher,
{
#[inline]
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let mut d = f.debug_map();
self.scan(|k, v| {
d.entry(k, v);
});
d.finish()
}
}
impl<K, V> HashMap<K, V, RandomState>
where
K: Eq + Hash + Sync,
V: Sync,
{
#[inline]
#[must_use]
pub fn new() -> Self {
Self::default()
}
#[inline]
#[must_use]
pub fn with_capacity(capacity: usize) -> HashMap<K, V, RandomState> {
let initial_capacity = capacity.max(Self::DEFAULT_CAPACITY);
let array = unsafe {
Arc::new_unchecked(BucketArray::<K, V, false>::new(
initial_capacity,
AtomicArc::null(),
))
};
let current_capacity = array.num_entries();
HashMap {
array: AtomicArc::from(array),
minimum_capacity: current_capacity,
additional_capacity: AtomicUsize::new(0),
resize_mutex: AtomicU8::new(0),
build_hasher: RandomState::new(),
}
}
}
impl<K, V> Default for HashMap<K, V, RandomState>
where
K: Eq + Hash + Sync,
V: Sync,
{
#[inline]
fn default() -> Self {
HashMap {
array: AtomicArc::from(unsafe {
Arc::new_unchecked(BucketArray::<K, V, false>::new(
Self::DEFAULT_CAPACITY,
AtomicArc::null(),
))
}),
minimum_capacity: Self::DEFAULT_CAPACITY,
additional_capacity: AtomicUsize::new(0),
resize_mutex: AtomicU8::new(0),
build_hasher: RandomState::new(),
}
}
}
impl<K, V, H> Drop for HashMap<K, V, H>
where
K: Eq + Hash + Sync,
V: Sync,
H: BuildHasher,
{
#[inline]
fn drop(&mut self) {
self.array
.swap((None, Tag::None), Relaxed)
.0
.map(|a| unsafe {
a.release_drop_in_place()
});
}
}
impl<K, V, H> HashTable<K, V, H, false> for HashMap<K, V, H>
where
K: Eq + Hash + Sync,
V: Sync,
H: BuildHasher,
{
#[inline]
fn hasher(&self) -> &H {
&self.build_hasher
}
#[inline]
fn cloner(_: &(K, V)) -> Option<(K, V)> {
None
}
#[inline]
fn bucket_array(&self) -> &AtomicArc<BucketArray<K, V, false>> {
&self.array
}
#[inline]
fn minimum_capacity(&self) -> usize {
self.minimum_capacity + self.additional_capacity.load(Relaxed)
}
#[inline]
fn resize_mutex(&self) -> &AtomicU8 {
&self.resize_mutex
}
}
impl<K, V, H> PartialEq for HashMap<K, V, H>
where
K: Eq + Hash + Sync,
V: PartialEq + Sync,
H: BuildHasher,
{
#[inline]
fn eq(&self, other: &Self) -> bool {
if !self.any(|k, v| other.read(k, |_, ov| v == ov) != Some(true)) {
return !other.any(|k, v| self.read(k, |_, sv| v == sv) != Some(true));
}
false
}
}
impl<'h, K, V, H> Entry<'h, K, V, H>
where
K: Eq + Hash + Sync,
V: Sync,
H: BuildHasher,
{
#[inline]
pub fn or_insert(self, val: V) -> OccupiedEntry<'h, K, V, H> {
self.or_insert_with(|| val)
}
#[inline]
pub fn or_insert_with<F: FnOnce() -> V>(self, constructor: F) -> OccupiedEntry<'h, K, V, H> {
self.or_insert_with_key(|_| constructor())
}
#[inline]
pub fn or_insert_with_key<F: FnOnce(&K) -> V>(
self,
constructor: F,
) -> OccupiedEntry<'h, K, V, H> {
match self {
Self::Occupied(o) => o,
Self::Vacant(v) => {
let val = constructor(v.key());
v.insert_entry(val)
}
}
}
#[inline]
pub fn key(&self) -> &K {
match self {
Self::Occupied(o) => o.key(),
Self::Vacant(v) => v.key(),
}
}
#[inline]
#[must_use]
pub fn and_modify<F>(self, f: F) -> Self
where
F: FnOnce(&mut V),
{
match self {
Self::Occupied(mut o) => {
f(o.get_mut());
Self::Occupied(o)
}
Self::Vacant(_) => self,
}
}
#[inline]
pub fn insert_entry(self, val: V) -> OccupiedEntry<'h, K, V, H> {
match self {
Self::Occupied(mut o) => {
o.insert(val);
o
}
Self::Vacant(v) => v.insert_entry(val),
}
}
}
impl<'h, K, V, H> Entry<'h, K, V, H>
where
K: Eq + Hash + Sync,
V: Default + Sync,
H: BuildHasher,
{
#[inline]
pub fn or_default(self) -> OccupiedEntry<'h, K, V, H> {
match self {
Self::Occupied(o) => o,
Self::Vacant(v) => v.insert_entry(Default::default()),
}
}
}
impl<'h, K, V, H> Debug for Entry<'h, K, V, H>
where
K: Debug + Eq + Hash + Sync,
V: Debug + Sync,
H: BuildHasher,
{
#[inline]
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
Self::Vacant(v) => f.debug_tuple("Entry").field(v).finish(),
Self::Occupied(o) => f.debug_tuple("Entry").field(o).finish(),
}
}
}
impl<'h, K, V, H> OccupiedEntry<'h, K, V, H>
where
K: Eq + Hash + Sync,
V: Sync,
H: BuildHasher,
{
#[inline]
#[must_use]
pub fn key(&self) -> &K {
&self.entry_ptr.get(self.data_block).0
}
#[inline]
#[must_use]
pub fn remove_entry(mut self) -> (K, V) {
let entry = unsafe {
self.locker
.erase(self.data_block, &mut self.entry_ptr)
.unwrap_unchecked()
};
if self.locker.bucket().num_entries() == 0 {
let barrier = Barrier::new();
let array = self.hashmap.current_array_unchecked(&barrier);
let bucket_index = array.calculate_bucket_index(self.hash);
if bucket_index % BUCKET_LEN == 0 {
let hashmap = self.hashmap;
drop(self);
hashmap.try_shrink(
hashmap.current_array_unchecked(&barrier),
bucket_index,
&barrier,
);
}
}
entry
}
#[inline]
#[must_use]
pub fn get(&self) -> &V {
&self.entry_ptr.get(self.data_block).1
}
#[inline]
pub fn get_mut(&mut self) -> &mut V {
&mut self.entry_ptr.get_mut(self.data_block, &mut self.locker).1
}
#[inline]
pub fn insert(&mut self, val: V) -> V {
replace(self.get_mut(), val)
}
#[inline]
#[must_use]
pub fn remove(self) -> V {
self.remove_entry().1
}
}
impl<'h, K, V, H> Debug for OccupiedEntry<'h, K, V, H>
where
K: Debug + Eq + Hash + Sync,
V: Debug + Sync,
H: BuildHasher,
{
#[inline]
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("OccupiedEntry")
.field("key", self.key())
.field("value", self.get())
.finish_non_exhaustive()
}
}
impl<'h, K, V, H> VacantEntry<'h, K, V, H>
where
K: Eq + Hash + Sync,
V: Sync,
H: BuildHasher,
{
#[inline]
pub fn key(&self) -> &K {
&self.key
}
#[inline]
pub fn into_key(self) -> K {
self.key
}
#[inline]
pub fn insert_entry(mut self, val: V) -> OccupiedEntry<'h, K, V, H> {
let barrier = Barrier::new();
let entry_ptr = self.locker.insert_with(
self.data_block,
BucketArray::<K, V, false>::partial_hash(self.hash),
|| (self.key, val),
self.hashmap.prolonged_barrier_ref(&barrier),
);
OccupiedEntry {
hashmap: self.hashmap,
hash: self.hash,
data_block: self.data_block,
locker: self.locker,
entry_ptr,
}
}
}
impl<'h, K, V, H> Debug for VacantEntry<'h, K, V, H>
where
K: Debug + Eq + Hash + Sync,
V: Debug + Sync,
H: BuildHasher,
{
#[inline]
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_tuple("VacantEntry").field(self.key()).finish()
}
}
impl<'h, K, V, H> Drop for Ticket<'h, K, V, H>
where
K: Eq + Hash + Sync,
V: Sync,
H: BuildHasher,
{
#[inline]
fn drop(&mut self) {
let result = self
.hashmap
.additional_capacity
.fetch_sub(self.increment, Relaxed);
self.hashmap.resize(&Barrier::new());
debug_assert!(result >= self.increment);
}
}