1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
use super::internal_node::{self, InternalNode};
use super::leaf::{InsertResult, RemoveResult, Scanner};
use super::leaf_node::{self, LeafNode};

use crate::ebr::{Arc, AtomicArc, Barrier, Tag};

use std::borrow::Borrow;
use std::sync::atomic::Ordering::{self, Acquire, Relaxed, Release};

/// [`Type`] indicates the type of a [`Node`].
pub enum Type<K, V>
where
    K: 'static + Clone + Ord + Send + Sync,
    V: 'static + Clone + Send + Sync,
{
    Internal(InternalNode<K, V>),
    Leaf(LeafNode<K, V>),
}

/// [`Node`] is either [`Type::Internal`] or [`Type::Leaf`].
pub struct Node<K, V>
where
    K: 'static + Clone + Ord + Send + Sync,
    V: 'static + Clone + Send + Sync,
{
    pub(super) node: Type<K, V>,
}

impl<K, V> Node<K, V>
where
    K: 'static + Clone + Ord + Send + Sync,
    V: 'static + Clone + Send + Sync,
{
    /// Creates a new [`InternalNode`].
    pub fn new_internal_node() -> Node<K, V> {
        Node {
            node: Type::Internal(InternalNode::new()),
        }
    }

    /// Creates a new [`LeafNode`].
    pub fn new_leaf_node() -> Node<K, V> {
        Node {
            node: Type::Leaf(LeafNode::new()),
        }
    }

    /// Returns a reference to the node internal.
    pub fn node(&self) -> &Type<K, V> {
        &self.node
    }

    /// Returns the depth of the node.
    pub fn depth(&self, depth: usize, barrier: &Barrier) -> usize {
        match &self.node {
            Type::Internal(internal_node) => internal_node.depth(depth, barrier),
            Type::Leaf(_) => depth,
        }
    }

    /// Checks if the node has retired.
    pub fn retired(&self, mo: Ordering) -> bool {
        match &self.node {
            Type::Internal(internal_node) => internal_node.retired(mo),
            Type::Leaf(leaf_node) => leaf_node.retired(mo),
        }
    }

    /// Searches for an entry associated with the given key.
    pub fn search<'b, Q>(&self, key: &Q, barrier: &'b Barrier) -> Option<&'b V>
    where
        K: 'b + Borrow<Q>,
        Q: Ord + ?Sized,
    {
        match &self.node {
            Type::Internal(internal_node) => internal_node.search(key, barrier),
            Type::Leaf(leaf_node) => leaf_node.search(key, barrier),
        }
    }

    /// Returns the minimum key-value pair.
    ///
    /// This method is not linearlizable.
    pub fn min<'b>(&self, barrier: &'b Barrier) -> Option<Scanner<'b, K, V>> {
        match &self.node {
            Type::Internal(internal_node) => internal_node.min(barrier),
            Type::Leaf(leaf_node) => leaf_node.min(barrier),
        }
    }

    /// Returns a [`Scanner`] pointing to an entry that is close enough to the entry with the
    /// maximum key among those keys smaller than or equal to the given key.
    ///
    /// This method is not linearlizable.
    pub fn max_le_appr<'b, Q>(&self, key: &Q, barrier: &'b Barrier) -> Option<Scanner<'b, K, V>>
    where
        K: 'b + Borrow<Q>,
        Q: Ord + ?Sized,
    {
        match &self.node {
            Type::Internal(internal_node) => internal_node.max_le_appr(key, barrier),
            Type::Leaf(leaf_node) => leaf_node.max_le_appr(key, barrier),
        }
    }

    /// Inserts a key-value pair.
    pub fn insert<const ASYNC: bool>(
        &self,
        key: K,
        value: V,
        barrier: &Barrier,
    ) -> Result<InsertResult<K, V>, (K, V)> {
        match &self.node {
            Type::Internal(internal_node) => internal_node.insert::<ASYNC>(key, value, barrier),
            Type::Leaf(leaf_node) => leaf_node.insert::<ASYNC>(key, value, barrier),
        }
    }

    /// Removes an entry associated with the given key.
    pub fn remove_if<Q, F: FnMut(&V) -> bool, const ASYNC: bool>(
        &self,
        key: &Q,
        condition: &mut F,
        barrier: &Barrier,
    ) -> Result<RemoveResult, bool>
    where
        K: Borrow<Q>,
        Q: Ord + ?Sized,
    {
        match &self.node {
            Type::Internal(internal_node) => {
                internal_node.remove_if::<_, _, ASYNC>(key, condition, barrier)
            }
            Type::Leaf(leaf_node) => leaf_node.remove_if::<_, _, ASYNC>(key, condition, barrier),
        }
    }

    /// Splits the current root node.
    pub fn split_root<const ASYNC: bool>(
        key: K,
        value: V,
        root: &AtomicArc<Node<K, V>>,
        barrier: &Barrier,
    ) -> (K, V) {
        // The fact that the `TreeIndex` calls this function means that the root is full and
        // locked.
        let mut new_root: Node<K, V> = Node::new_internal_node();
        if let Type::Internal(internal_node) = &mut new_root.node {
            internal_node.unbounded_child = root.clone(Relaxed, barrier);
            let result = internal_node.split_node::<ASYNC>(
                key,
                value,
                None,
                root.load(Relaxed, barrier),
                &internal_node.unbounded_child,
                true,
                barrier,
            );
            let (key, value) = match result {
                Ok(InsertResult::Retry(k, v)) => (k, v),
                _ => unreachable!(),
            };

            // Updates the pointer before unlocking the root.
            let new_root = Arc::new(new_root);
            if let Some(old_root) = root.swap((Some(new_root.clone()), Tag::None), Release).0 {
                if let Type::Internal(internal_node) = &new_root.node {
                    internal_node.finish_split(barrier);
                    old_root.commit(barrier);
                }
                barrier.reclaim(old_root);
            };

            (key, value)
        } else {
            (key, value)
        }
    }

    /// Removes the current root node.
    ///
    /// # Errors
    ///
    /// Returns an error if a conflict is detected.
    pub fn remove_root<const ASYNC: bool>(
        root: &AtomicArc<Node<K, V>>,
        barrier: &Barrier,
    ) -> Result<bool, ()> {
        let root_ptr = root.load(Acquire, barrier);
        if let Some(root_ref) = root_ptr.as_ref() {
            let mut internal_node_locker = None;
            let mut leaf_node_locker = None;
            match &root_ref.node {
                Type::Internal(internal_node) => {
                    if let Some(locker) = internal_node::Locker::try_lock(internal_node, barrier) {
                        internal_node_locker.replace(locker);
                    } else {
                        internal_node.wait::<ASYNC>(barrier);
                    }
                }
                Type::Leaf(leaf_node) => {
                    if let Some(locker) = leaf_node::Locker::try_lock(leaf_node, barrier) {
                        leaf_node_locker.replace(locker);
                    } else {
                        leaf_node.wait::<ASYNC>(barrier);
                    }
                }
            };
            if internal_node_locker.is_none() && leaf_node_locker.is_none() {
                // The root node is locked by another thread.
                return Err(());
            }
            if !root_ref.retired(Relaxed) {
                // The root node is still usable.
                return Ok(false);
            }

            match root.compare_exchange(root_ptr, (None, Tag::None), Acquire, Acquire, barrier) {
                Ok((old_root, _)) => {
                    if let Some(old_root) = old_root {
                        barrier.reclaim(old_root);
                    }
                    return Ok(true);
                }
                Err(_) => {
                    return Ok(false);
                }
            }
        }

        Err(())
    }

    /// Commits an on-going structural change.
    pub fn commit(&self, barrier: &Barrier) {
        match &self.node {
            Type::Internal(internal_node) => internal_node.commit(barrier),
            Type::Leaf(leaf_node) => leaf_node.commit(barrier),
        }
    }

    /// Rolls back an on-going structural change.
    pub fn rollback(&self, barrier: &Barrier) {
        match &self.node {
            Type::Internal(internal_node) => internal_node.rollback(barrier),
            Type::Leaf(leaf_node) => leaf_node.rollback(barrier),
        }
    }

    /// Cleans up logically deleted [`LeafNode`] instances in the linked list.
    ///
    /// If the target leaf node does not exist in the sub-tree, returns `false`.
    pub fn cleanup_link<'b, Q>(&self, key: &Q, traverse_max: bool, barrier: &'b Barrier) -> bool
    where
        K: 'b + Borrow<Q>,
        Q: Ord + ?Sized,
    {
        match &self.node {
            Type::Internal(internal_node) => internal_node.cleanup_link(key, traverse_max, barrier),
            Type::Leaf(leaf_node) => leaf_node.cleanup_link(key, traverse_max, barrier),
        }
    }
}