scc 0.6.8

Collection of building blocks for concurrent programming.
Documentation

Scalable Concurrent Containers

Cargo Crates.io GitHub Workflow Status

A collection of concurrent data structures and building blocks for concurrent programming.

  • ebr implements epoch-based reclamation.
  • LinkedList is a type trait implementing a wait-free concurrent singly linked list.
  • HashMap is a concurrent hash map.
  • HashSet is a concurrent hash set based on HashMap.
  • HashIndex is a concurrent hash index allowing lock-free read and scan.
  • TreeIndex is a concurrent B+ tree allowing lock-free read and scan.

See Performance for benchmark results.

EBR

The ebr module implements epoch-based reclamation and various types of auxiliary data structures to make use of it. Its epoch-based reclamation algorithm is similar to that implemented in crossbeam_epoch, however users may find it easier to use as the lifetime of an instance is safely managed. For instance, ebr::AtomicArc and ebr::Arc hold a strong reference to the underlying instance, and the instance is automatically passed to the garbage collector when the reference count drops to zero.

Examples

The ebr module can be used without an unsafe block.

use scc::ebr::{Arc, AtomicArc, Barrier, Ptr, Tag};

use std::sync::atomic::Ordering::Relaxed;

// `atomic_arc` holds a strong reference to `17`.
let atomic_arc: AtomicArc<usize> = AtomicArc::new(17);

// `barrier` prevents the garbage collector from dropping reachable instances.
let barrier: Barrier = Barrier::new();

// `ptr` cannot outlive `barrier`.
let mut ptr: Ptr<usize> = atomic_arc.load(Relaxed, &barrier);
assert_eq!(*ptr.as_ref().unwrap(), 17);

// `atomic_arc` can be tagged.
atomic_arc.update_tag_if(Tag::First, |t| t == Tag::None, Relaxed);

// `ptr` is not tagged, so CAS fails.
assert!(atomic_arc.compare_exchange(
    ptr,
    (Some(Arc::new(18)), Tag::First),
    Relaxed,
    Relaxed,
    &barrier).is_err());

// `ptr` can be tagged.
ptr.set_tag(Tag::First);

// The return value of CAS is a handle to the instance that `atomic_arc` previously owned.
let prev: Arc<usize> = atomic_arc.compare_exchange(
    ptr,
    (Some(Arc::new(18)), Tag::Second),
    Relaxed,
    Relaxed,
    &barrier).unwrap().0.unwrap();
assert_eq!(*prev, 17);

// `17` will be garbage-collected later.
drop(prev);

// `ebr::AtomicArc` can be converted into `ebr::Arc`.
let arc: Arc<usize> = atomic_arc.try_into_arc(Relaxed).unwrap();
assert_eq!(*arc, 18);

// `18` will be garbage-collected later.
drop(arc);

// `17` is still valid as `barrier` keeps the garbage collector from dropping it.
assert_eq!(*ptr.as_ref().unwrap(), 17);

LinkedList

LinkedList is a type trait that implements wait-free concurrent singly linked list operations, backed by EBR. It additionally provides support for marking an entry of a linked list to indicate that the entry is in a user-defined state.

Examples

use scc::ebr::{Arc, AtomicArc, Barrier};
use scc::LinkedList;

use std::sync::atomic::Ordering::Relaxed;

#[derive(Default)]
struct L(AtomicArc<L>, usize);
impl LinkedList for L {
    fn link_ref(&self) -> &AtomicArc<L> {
        &self.0
    }
}

let barrier = Barrier::new();

let head: L = L::default();
let tail: Arc<L> = Arc::new(L(AtomicArc::null(), 1));

// A new entry is pushed.
assert!(head.push_back(tail.clone(), false, Relaxed, &barrier).is_ok());
assert!(!head.is_marked(Relaxed));

// Users can mark a flag on an entry.
head.mark(Relaxed);
assert!(head.is_marked(Relaxed));

// `next_ptr` traverses the linked list.
let next_ptr = head.next_ptr(Relaxed, &barrier);
assert_eq!(next_ptr.as_ref().unwrap().1, 1);

// Once `tail` is deleted, it becomes invisible.
tail.delete_self(Relaxed);
assert!(head.next_ptr(Relaxed, &barrier).is_null());

HashMap

HashMap is a scalable in-memory unique key-value container that is targeted at highly concurrent heavy workloads. It applies EBR to its entry array management, thus enabling it to avoid container-level locking and data sharding.

Examples

A unique key can be inserted along with its corresponding value, and then it can be updated, read, and removed.

use scc::HashMap;

let hashmap: HashMap<u64, u32> = HashMap::default();

assert!(hashmap.insert(1, 0).is_ok());
assert_eq!(hashmap.update(&1, |v| { *v = 2; *v }).unwrap(), 2);
assert_eq!(hashmap.read(&1, |_, v| *v).unwrap(), 2);
assert_eq!(hashmap.remove(&1).unwrap(), (1, 2));

It supports upsert as in database management software; it tries to insert the given key-value pair, and if it fails, it updates the value field with the supplied closure.

use scc::HashMap;

let hashmap: HashMap<u64, u32> = HashMap::default();

hashmap.upsert(1, || 2, |_, v| *v = 2);
assert_eq!(hashmap.read(&1, |_, v| *v).unwrap(), 2);
hashmap.upsert(1, || 2, |_, v| *v = 3);
assert_eq!(hashmap.read(&1, |_, v| *v).unwrap(), 3);

There is no method to confine the lifetime of references derived from an Iterator to the Iterator, and it is illegal to let them live as long as the HashMap. Therefore Iterator is not implemented, instead, it provides two methods that allow a HashMap to iterate over its entries: for_each, and retain.

use scc::HashMap;

let hashmap: HashMap<u64, u32> = HashMap::default();

assert!(hashmap.insert(1, 0).is_ok());
assert!(hashmap.insert(2, 1).is_ok());

// Inside `for_each`, an `ebr::Barrier` protects the entry array.
let mut acc = 0;
hashmap.for_each(|k, v_mut| { acc += *k; *v_mut = 2; });
assert_eq!(acc, 3);

// `for_each` can modify the entries.
assert_eq!(hashmap.read(&1, |_, v| *v).unwrap(), 2);
assert_eq!(hashmap.read(&2, |_, v| *v).unwrap(), 2);

assert!(hashmap.insert(3, 2).is_ok());

// Inside `retain`, an `ebr::Barrier` protects the entry array.
assert_eq!(hashmap.retain(|key, value| *key == 1 && *value == 0), (1, 2));

Asynchronous methods can be used in asynchronous code blocks.

use scc::HashMap;

let hashmap: HashMap<u64, u32> = HashMap::default();
let future_insert = hashmap.insert_async(11, 17);
let result = future_insert.await;

HashSet

HashSet is a variant of HashMap where the value type is ().

Examples

All the HashSet methods do not receive a value argument.

use scc::HashSet;

let hashset: HashSet<u64> = HashSet::default();

assert!(hashset.read(&1, |_| true).is_none());
assert!(hashset.insert(1).is_ok());
assert!(hashset.read(&1, |_| true).unwrap());

The capacity of a HashSet can be specified.

use scc::HashSet;
use std::collections::hash_map::RandomState;

let hashset: HashSet<u64, RandomState> = HashSet::new(1000000, RandomState::new());
assert_eq!(hashset.capacity(), 1048576);

HashIndex

HashIndex is a read-optimized version of HashMap. It applies EBR to its entry management as well, enabling it to perform read operations without acquiring locks.

Examples

Its read method does not modify any shared data.

use scc::HashIndex;

let hashindex: HashIndex<u64, u32> = HashIndex::default();

assert!(hashindex.insert(1, 0).is_ok());
assert_eq!(hashindex.read(&1, |_, v| *v).unwrap(), 0);

An Iterator is implemented for HashIndex, because derived references can survive as long as the associated ebr::Barrier lives.

use scc::ebr::Barrier;
use scc::HashIndex;

let hashindex: HashIndex<u64, u32> = HashIndex::default();

assert!(hashindex.insert(1, 0).is_ok());

let barrier = Barrier::new();

// An `ebr::Barrier` has to be supplied to `iter`.
let mut iter = hashindex.iter(&barrier);

// The derived reference can live as long as `barrier`.
let entry_ref = iter.next().unwrap();
assert_eq!(iter.next(), None);

drop(hashindex);

// The entry can be read after `hashindex` is dropped.
assert_eq!(entry_ref, (&1, &0));

TreeIndex

TreeIndex is a B+ tree variant optimized for read operations. The ebr module enables it to implement lock-free read and scan methods.

Examples

Key-value pairs can be inserted, read, and removed.

use scc::TreeIndex;

let treeindex: TreeIndex<u64, u32> = TreeIndex::new();

assert!(treeindex.insert(1, 10).is_ok());
assert_eq!(treeindex.read(&1, |_, value| *value).unwrap(), 10);
assert!(treeindex.remove(&1));

Key-value pairs can be scanned.

use scc::ebr::Barrier;
use scc::TreeIndex;

let treeindex: TreeIndex<u64, u32> = TreeIndex::new();

assert!(treeindex.insert(1, 10).is_ok());
assert!(treeindex.insert(2, 11).is_ok());
assert!(treeindex.insert(3, 13).is_ok());

let barrier = Barrier::new();

let mut visitor = treeindex.iter(&barrier);
assert_eq!(visitor.next().unwrap(), (&1, &10));
assert_eq!(visitor.next().unwrap(), (&2, &11));
assert_eq!(visitor.next().unwrap(), (&3, &13));
assert!(visitor.next().is_none());

Key-value pairs in a specific range can be scanned.

use scc::ebr::Barrier;
use scc::TreeIndex;

let treeindex: TreeIndex<u64, u32> = TreeIndex::new();

for i in 0..10 {
    assert!(treeindex.insert(i, 10).is_ok());
}

let barrier = Barrier::new();

assert_eq!(treeindex.range(1..1, &barrier).count(), 0);
assert_eq!(treeindex.range(4..8, &barrier).count(), 4);
assert_eq!(treeindex.range(4..=8, &barrier).count(), 5);

Asynchronous methods can be used in asynchronous code blocks.

use scc::TreeIndex;

let treeindex: TreeIndex<u64, u32> = TreeIndex::default();

let future_insert = treeindex.insert_async(11, 17);
let result = future_insert.await;

Performance

Setup

  • OS: SUSE Linux Enterprise Server 15 SP2
  • CPU: Intel(R) Xeon(R) CPU E7-8880 v4 @ 2.20GHz x 4
  • RAM: 1TB
  • Rust: 1.60.0
  • SCC: 0.6.8

Workload

  • A disjoint range of 16M usize integers is assigned to each thread.
  • Insert: each thread inserts its own records.
  • Read: each thread reads its own records in the container.
  • Scan: each thread scans the entire container once.
  • Remove: each thread removes its own records from the container.
  • InsertR, RemoveR: each thread additionally operates using keys belonging to a randomly chosen remote thread.
  • MixedR: each thread performs InsertR -> ReadR -> RemoveR.

Results

1 thread 4 threads 16 threads 64 threads
InsertL 9.411s 16.041s 43.012s 46.540s
ReadL 3.934s 4.955s 6.548s 8.612s
ScanL 0.147s 0.801s 3.021s 13.186s
RemoveL 4.654s 6.315s 10.651s 23.05s
InsertR 11.116s 27.104s 54.909s 58.564s
MixedR 14.976s 29.388s 30.518s 33.081s
RemoveR 7.057s 12.565s 18.873s 26.77s
1 thread 4 threads 16 threads 64 threads
InsertL 9.73s 17.11s 44.599s 52.276s
ReadL 3.59s 4.977s 6.108s 8.3s
ScanL 0.279s 1.279s 5.079s 20.317s
RemoveL 4.755s 7.406s 12.329s 33.509s
InsertR 11.416s 26.998s 54.513s 65.274s
MixedR 18.224s 35.357s 39.05s 42.37s
RemoveR 8.553s 13.314s 19.362s 38.209s
1 thread 4 threads 16 threads 64 threads
InsertL 15.006s 17.896s 25.481s 74.218s
ReadL 3.55s 4.142s 4.585s 4.807s
ScanL 1.228s 4.913s 19.754s 81.71s
RemoveL 5.841s 7.711s 8.688s 9.154s
InsertR 20.388s 71.534s 77.573s 90.999s
MixedR 27.864s 162.571s 532.533s 630.033s
RemoveR 9.346s 18.642s 22.832s 26.394s

Performance Comparison with DashMap and flurry

Changelog

0.6.8

  • Fix wait queue performance issues with asynchronous TreeIndex methods.

0.6.7

  • Fix ebr API, ebr::AtomicArc::swap: return the previous ebr::Tag along with the pointer.
  • Fix ebr API, ebr::AtomicArc::compare_exchange: receive a reference to ebr::Barrier.
  • Fix #49 for synchronous TreeIndex methods.

0.6.6

  • Add {HashMap, HashSet}::{scan, scan_async} for a read-only scan.
  • Minor HashMap optimization.

0.6.5