satrs 0.2.1

A framework to build software for remote systems
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
//! # Pool implementation providing memory pools for packet storage.
//!
//! This module provides generic abstractions for memory pools which provide a storage
//! machanism for variable sized data like Telemetry and Telecommand (TMTC) packets. The core
//! abstraction for this is the [PoolProvider] trait.
//!
//! It also contains the [StaticMemoryPool] as a concrete implementation which can be used to avoid
//! dynamic run-time allocations for the storage of TMTC packets.
//!
//! # Example for the [StaticMemoryPool]
//!
//! ```
//! use satrs::pool::{PoolProvider, StaticMemoryPool, StaticPoolConfig};
//!
//! // 4 buckets of 4 bytes, 2 of 8 bytes and 1 of 16 bytes
//! let pool_cfg = StaticPoolConfig::new(vec![(4, 4), (2, 8), (1, 16)], false);
//! let mut local_pool = StaticMemoryPool::new(pool_cfg);
//! let mut read_buf: [u8; 16] = [0; 16];
//! let mut addr;
//! {
//!     // Add new data to the pool
//!     let mut example_data = [0; 4];
//!     example_data[0] = 42;
//!     let res = local_pool.add(&example_data);
//!     assert!(res.is_ok());
//!     addr = res.unwrap();
//! }
//!
//! {
//!     // Read the store data back
//!     let res = local_pool.read(&addr, &mut read_buf);
//!     assert!(res.is_ok());
//!     let read_bytes = res.unwrap();
//!     assert_eq!(read_bytes, 4);
//!     assert_eq!(read_buf[0], 42);
//!     // Modify the stored data
//!     let res = local_pool.modify(&addr, |buf| {
//!         buf[0] = 12;
//!     });
//!     assert!(res.is_ok());
//! }
//!
//! {
//!     // Read the modified data back
//!     let res = local_pool.read(&addr, &mut read_buf);
//!     assert!(res.is_ok());
//!     let read_bytes = res.unwrap();
//!     assert_eq!(read_bytes, 4);
//!     assert_eq!(read_buf[0], 12);
//! }
//!
//! // Delete the stored data
//! local_pool.delete(addr);
//!
//! // Get a free element in the pool with an appropriate size
//! {
//!     let res = local_pool.free_element(12, |buf| {
//!         buf[0] = 7;
//!     });
//!     assert!(res.is_ok());
//!     addr = res.unwrap();
//! }
//!
//! // Read back the data
//! {
//!     // Read the store data back
//!     let res = local_pool.read(&addr, &mut read_buf);
//!     assert!(res.is_ok());
//!     let read_bytes = res.unwrap();
//!     assert_eq!(read_bytes, 12);
//!     assert_eq!(read_buf[0], 7);
//! }
//! ```
#[cfg(feature = "alloc")]
pub use alloc_mod::*;
use core::fmt::{Display, Formatter};
use delegate::delegate;
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};
use spacepackets::ByteConversionError;
#[cfg(feature = "std")]
use std::error::Error;

type NumBlocks = u16;
pub type PoolAddr = u64;

/// Simple address type used for transactions with the local pool.
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct StaticPoolAddr {
    pub(crate) pool_idx: u16,
    pub(crate) packet_idx: NumBlocks,
}

impl StaticPoolAddr {
    pub const INVALID_ADDR: u32 = 0xFFFFFFFF;

    pub fn raw(&self) -> u32 {
        ((self.pool_idx as u32) << 16) | self.packet_idx as u32
    }
}

impl From<StaticPoolAddr> for PoolAddr {
    fn from(value: StaticPoolAddr) -> Self {
        ((value.pool_idx as u64) << 16) | value.packet_idx as u64
    }
}

impl From<PoolAddr> for StaticPoolAddr {
    fn from(value: PoolAddr) -> Self {
        Self {
            pool_idx: ((value >> 16) & 0xff) as u16,
            packet_idx: (value & 0xff) as u16,
        }
    }
}

impl Display for StaticPoolAddr {
    fn fmt(&self, f: &mut Formatter<'_>) -> core::fmt::Result {
        write!(
            f,
            "StoreAddr(pool index: {}, packet index: {})",
            self.pool_idx, self.packet_idx
        )
    }
}

#[derive(Debug, Clone, PartialEq, Eq)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub enum StoreIdError {
    InvalidSubpool(u16),
    InvalidPacketIdx(u16),
}

impl Display for StoreIdError {
    fn fmt(&self, f: &mut Formatter<'_>) -> core::fmt::Result {
        match self {
            StoreIdError::InvalidSubpool(pool) => {
                write!(f, "invalid subpool, index: {pool}")
            }
            StoreIdError::InvalidPacketIdx(packet_idx) => {
                write!(f, "invalid packet index: {packet_idx}")
            }
        }
    }
}

#[cfg(feature = "std")]
impl Error for StoreIdError {}

#[derive(Debug, Clone, PartialEq, Eq)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub enum PoolError {
    /// Requested data block is too large
    DataTooLarge(usize),
    /// The store is full. Contains the index of the full subpool
    StoreFull(u16),
    /// Store ID is invalid. This also includes partial errors where only the subpool is invalid
    InvalidStoreId(StoreIdError, Option<PoolAddr>),
    /// Valid subpool and packet index, but no data is stored at the given address
    DataDoesNotExist(PoolAddr),
    ByteConversionError(spacepackets::ByteConversionError),
    LockError,
    /// Internal or configuration errors
    InternalError(u32),
}

impl Display for PoolError {
    fn fmt(&self, f: &mut Formatter<'_>) -> core::fmt::Result {
        match self {
            PoolError::DataTooLarge(size) => {
                write!(f, "data to store with size {size} is too large")
            }
            PoolError::StoreFull(u16) => {
                write!(f, "store is too full. index for full subpool: {u16}")
            }
            PoolError::InvalidStoreId(id_e, addr) => {
                write!(f, "invalid store ID: {id_e}, address: {addr:?}")
            }
            PoolError::DataDoesNotExist(addr) => {
                write!(f, "no data exists at address {addr:?}")
            }
            PoolError::InternalError(e) => {
                write!(f, "internal error: {e}")
            }
            PoolError::ByteConversionError(e) => {
                write!(f, "store error: {e}")
            }
            PoolError::LockError => {
                write!(f, "lock error")
            }
        }
    }
}

impl From<ByteConversionError> for PoolError {
    fn from(value: ByteConversionError) -> Self {
        Self::ByteConversionError(value)
    }
}

#[cfg(feature = "std")]
impl Error for PoolError {
    fn source(&self) -> Option<&(dyn Error + 'static)> {
        if let PoolError::InvalidStoreId(e, _) = self {
            return Some(e);
        }
        None
    }
}

/// Generic trait for pool providers which provide memory pools for variable sized data.
///
/// It specifies a basic API to [Self::add], [Self::modify], [Self::read] and [Self::delete] data
/// in the store at its core. The API was designed so internal optimizations can be performed
/// more easily and that is is also possible to make the pool structure [Sync] without the whole
/// pool structure being wrapped inside a lock.
pub trait PoolProvider {
    /// Add new data to the pool. The provider should attempt to reserve a memory block with the
    /// appropriate size and then copy the given data to the block. Yields a [PoolAddr] which can
    /// be used to access the data stored in the pool
    fn add(&mut self, data: &[u8]) -> Result<PoolAddr, PoolError>;

    /// The provider should attempt to reserve a free memory block with the appropriate size first.
    /// It then executes a user-provided closure and passes a mutable reference to that memory
    /// block to the closure. This allows the user to write data to the memory block.
    /// The function should yield a [PoolAddr] which can be used to access the data stored in the
    /// pool.
    fn free_element<W: FnMut(&mut [u8])>(
        &mut self,
        len: usize,
        writer: W,
    ) -> Result<PoolAddr, PoolError>;

    /// Modify data added previously using a given [PoolAddr]. The provider should use the store
    /// address to determine if a memory block exists for that address. If it does, it should
    /// call the user-provided closure and pass a mutable reference to the memory block
    /// to the closure. This allows the user to modify the memory block.
    fn modify<U: FnMut(&mut [u8])>(&mut self, addr: &PoolAddr, updater: U)
        -> Result<(), PoolError>;

    /// The provider should copy the data from the memory block to the user-provided buffer if
    /// it exists.
    fn read(&self, addr: &PoolAddr, buf: &mut [u8]) -> Result<usize, PoolError>;

    /// Delete data inside the pool given a [PoolAddr].
    fn delete(&mut self, addr: PoolAddr) -> Result<(), PoolError>;
    fn has_element_at(&self, addr: &PoolAddr) -> Result<bool, PoolError>;

    /// Retrieve the length of the data at the given store address.
    fn len_of_data(&self, addr: &PoolAddr) -> Result<usize, PoolError>;

    #[cfg(feature = "alloc")]
    fn read_as_vec(&self, addr: &PoolAddr) -> Result<alloc::vec::Vec<u8>, PoolError> {
        let mut vec = alloc::vec![0; self.len_of_data(addr)?];
        self.read(addr, &mut vec)?;
        Ok(vec)
    }
}

/// Extension trait which adds guarded pool access classes.
pub trait PoolProviderWithGuards: PoolProvider {
    /// This function behaves like [PoolProvider::read], but consumes the provided address
    /// and returns a RAII conformant guard object.
    ///
    /// Unless the guard [PoolRwGuard::release] method is called, the data for the
    /// given address will be deleted automatically when the guard is dropped.
    /// This can prevent memory leaks. Users can read the data and release the guard
    /// if the data in the store is valid for further processing. If the data is faulty, no
    /// manual deletion is necessary when returning from a processing function prematurely.
    fn read_with_guard(&mut self, addr: PoolAddr) -> PoolGuard<Self>;

    /// This function behaves like [PoolProvider::modify], but consumes the provided
    /// address and returns a RAII conformant guard object.
    ///
    /// Unless the guard [PoolRwGuard::release] method is called, the data for the
    /// given address will be deleted automatically when the guard is dropped.
    /// This can prevent memory leaks. Users can read (and modify) the data and release the guard
    /// if the data in the store is valid for further processing. If the data is faulty, no
    /// manual deletion is necessary when returning from a processing function prematurely.
    fn modify_with_guard(&mut self, addr: PoolAddr) -> PoolRwGuard<Self>;
}

pub struct PoolGuard<'a, MemProvider: PoolProvider + ?Sized> {
    pool: &'a mut MemProvider,
    pub addr: PoolAddr,
    no_deletion: bool,
    deletion_failed_error: Option<PoolError>,
}

/// This helper object can be used to safely access pool data without worrying about memory
/// leaks.
impl<'a, MemProvider: PoolProvider> PoolGuard<'a, MemProvider> {
    pub fn new(pool: &'a mut MemProvider, addr: PoolAddr) -> Self {
        Self {
            pool,
            addr,
            no_deletion: false,
            deletion_failed_error: None,
        }
    }

    pub fn read(&self, buf: &mut [u8]) -> Result<usize, PoolError> {
        self.pool.read(&self.addr, buf)
    }

    #[cfg(feature = "alloc")]
    pub fn read_as_vec(&self) -> Result<alloc::vec::Vec<u8>, PoolError> {
        self.pool.read_as_vec(&self.addr)
    }

    /// Releasing the pool guard will disable the automatic deletion of the data when the guard
    /// is dropped.
    pub fn release(&mut self) {
        self.no_deletion = true;
    }
}

impl<MemProvider: PoolProvider + ?Sized> Drop for PoolGuard<'_, MemProvider> {
    fn drop(&mut self) {
        if !self.no_deletion {
            if let Err(e) = self.pool.delete(self.addr) {
                self.deletion_failed_error = Some(e);
            }
        }
    }
}

pub struct PoolRwGuard<'a, MemProvider: PoolProvider + ?Sized> {
    guard: PoolGuard<'a, MemProvider>,
}

impl<'a, MemProvider: PoolProvider> PoolRwGuard<'a, MemProvider> {
    pub fn new(pool: &'a mut MemProvider, addr: PoolAddr) -> Self {
        Self {
            guard: PoolGuard::new(pool, addr),
        }
    }

    pub fn update<U: FnMut(&mut [u8])>(&mut self, updater: &mut U) -> Result<(), PoolError> {
        self.guard.pool.modify(&self.guard.addr, updater)
    }

    delegate!(
        to self.guard {
            pub fn read(&self, buf: &mut [u8]) -> Result<usize, PoolError>;
            /// Releasing the pool guard will disable the automatic deletion of the data when the guard
            /// is dropped.
            pub fn release(&mut self);
        }
    );
}

#[cfg(feature = "alloc")]
mod alloc_mod {
    use super::{PoolGuard, PoolProvider, PoolProviderWithGuards, PoolRwGuard, StaticPoolAddr};
    use crate::pool::{NumBlocks, PoolAddr, PoolError, StoreIdError};
    use alloc::vec;
    use alloc::vec::Vec;
    use spacepackets::ByteConversionError;
    #[cfg(feature = "std")]
    use std::sync::{Arc, RwLock};

    #[cfg(feature = "std")]
    pub type SharedStaticMemoryPool = Arc<RwLock<StaticMemoryPool>>;

    type PoolSize = usize;
    const STORE_FREE: PoolSize = PoolSize::MAX;
    pub const POOL_MAX_SIZE: PoolSize = STORE_FREE - 1;

    /// Configuration structure of the [static memory pool][StaticMemoryPool]
    ///
    /// # Parameters
    ///
    /// * `cfg` - Vector of tuples which represent a subpool. The first entry in the tuple specifies
    ///     the number of memory blocks in the subpool, the second entry the size of the blocks
    /// * `spill_to_higher_subpools` - Specifies whether data will be spilled to higher subpools
    ///     if the next fitting subpool is full. This is useful to ensure the pool remains useful
    ///     for all data sizes as long as possible. However, an undesirable side-effect might be
    ///     the chocking of larger subpools by underdimensioned smaller subpools.
    #[derive(Clone)]
    pub struct StaticPoolConfig {
        cfg: Vec<(NumBlocks, usize)>,
        spill_to_higher_subpools: bool,
    }

    impl StaticPoolConfig {
        pub fn new(cfg: Vec<(NumBlocks, usize)>, spill_to_higher_subpools: bool) -> Self {
            StaticPoolConfig {
                cfg,
                spill_to_higher_subpools,
            }
        }

        pub fn cfg(&self) -> &Vec<(NumBlocks, usize)> {
            &self.cfg
        }

        pub fn sanitize(&mut self) -> usize {
            self.cfg
                .retain(|&(bucket_num, size)| bucket_num > 0 && size < POOL_MAX_SIZE);
            self.cfg
                .sort_unstable_by(|(_, sz0), (_, sz1)| sz0.partial_cmp(sz1).unwrap());
            self.cfg.len()
        }
    }

    /// Pool implementation providing sub-pools with fixed size memory blocks.
    ///
    /// This is a simple memory pool implementation which pre-allocates all subpools using a given
    /// pool configuration. After the pre-allocation, no dynamic memory allocation will be
    /// performed during run-time. This makes the implementation suitable for real-time
    /// applications and embedded environments.
    ///
    /// The subpool bucket sizes only denote the maximum possible data size being stored inside
    /// them and the pool implementation will still track the size of the data stored inside it.
    /// The implementation will generally determine the best fitting subpool for given data to
    /// add. Currently, the pool does not support spilling to larger subpools if the closest
    /// fitting subpool is full. This might be added in the future.
    ///
    /// Transactions with the [pool][StaticMemoryPool] are done using a generic
    /// [address][PoolAddr] type. Adding any data to the pool will yield a store address.
    /// Modification and read operations are done using a reference to a store address. Deletion
    /// will consume the store address.
    pub struct StaticMemoryPool {
        pool_cfg: StaticPoolConfig,
        pool: Vec<Vec<u8>>,
        sizes_lists: Vec<Vec<PoolSize>>,
    }

    impl StaticMemoryPool {
        /// Create a new local pool from the [given configuration][StaticPoolConfig]. This function
        /// will sanitize the given configuration as well.
        pub fn new(mut cfg: StaticPoolConfig) -> StaticMemoryPool {
            let subpools_num = cfg.sanitize();
            let mut local_pool = StaticMemoryPool {
                pool_cfg: cfg,
                pool: Vec::with_capacity(subpools_num),
                sizes_lists: Vec::with_capacity(subpools_num),
            };
            for &(num_elems, elem_size) in local_pool.pool_cfg.cfg.iter() {
                let next_pool_len = elem_size * num_elems as usize;
                local_pool.pool.push(vec![0; next_pool_len]);
                let next_sizes_list_len = num_elems as usize;
                local_pool
                    .sizes_lists
                    .push(vec![STORE_FREE; next_sizes_list_len]);
            }
            local_pool
        }

        fn addr_check(&self, addr: &StaticPoolAddr) -> Result<usize, PoolError> {
            self.validate_addr(addr)?;
            let pool_idx = addr.pool_idx as usize;
            let size_list = self.sizes_lists.get(pool_idx).unwrap();
            let curr_size = size_list[addr.packet_idx as usize];
            if curr_size == STORE_FREE {
                return Err(PoolError::DataDoesNotExist(PoolAddr::from(*addr)));
            }
            Ok(curr_size)
        }

        fn validate_addr(&self, addr: &StaticPoolAddr) -> Result<(), PoolError> {
            let pool_idx = addr.pool_idx as usize;
            if pool_idx >= self.pool_cfg.cfg.len() {
                return Err(PoolError::InvalidStoreId(
                    StoreIdError::InvalidSubpool(addr.pool_idx),
                    Some(PoolAddr::from(*addr)),
                ));
            }
            if addr.packet_idx >= self.pool_cfg.cfg[addr.pool_idx as usize].0 {
                return Err(PoolError::InvalidStoreId(
                    StoreIdError::InvalidPacketIdx(addr.packet_idx),
                    Some(PoolAddr::from(*addr)),
                ));
            }
            Ok(())
        }

        fn reserve(&mut self, data_len: usize) -> Result<StaticPoolAddr, PoolError> {
            let mut subpool_idx = self.find_subpool(data_len, 0)?;

            if self.pool_cfg.spill_to_higher_subpools {
                while let Err(PoolError::StoreFull(_)) = self.find_empty(subpool_idx) {
                    if (subpool_idx + 1) as usize == self.sizes_lists.len() {
                        return Err(PoolError::StoreFull(subpool_idx));
                    }
                    subpool_idx += 1;
                }
            }

            let (slot, size_slot_ref) = self.find_empty(subpool_idx)?;
            *size_slot_ref = data_len;
            Ok(StaticPoolAddr {
                pool_idx: subpool_idx,
                packet_idx: slot,
            })
        }

        fn find_subpool(&self, req_size: usize, start_at_subpool: u16) -> Result<u16, PoolError> {
            for (i, &(_, elem_size)) in self.pool_cfg.cfg.iter().enumerate() {
                if i < start_at_subpool as usize {
                    continue;
                }
                if elem_size >= req_size {
                    return Ok(i as u16);
                }
            }
            Err(PoolError::DataTooLarge(req_size))
        }

        fn write(&mut self, addr: &StaticPoolAddr, data: &[u8]) -> Result<(), PoolError> {
            let packet_pos = self.raw_pos(addr).ok_or(PoolError::InternalError(0))?;
            let subpool = self
                .pool
                .get_mut(addr.pool_idx as usize)
                .ok_or(PoolError::InternalError(1))?;
            let pool_slice = &mut subpool[packet_pos..packet_pos + data.len()];
            pool_slice.copy_from_slice(data);
            Ok(())
        }

        fn find_empty(&mut self, subpool: u16) -> Result<(u16, &mut usize), PoolError> {
            if let Some(size_list) = self.sizes_lists.get_mut(subpool as usize) {
                for (i, elem_size) in size_list.iter_mut().enumerate() {
                    if *elem_size == STORE_FREE {
                        return Ok((i as u16, elem_size));
                    }
                }
            } else {
                return Err(PoolError::InvalidStoreId(
                    StoreIdError::InvalidSubpool(subpool),
                    None,
                ));
            }
            Err(PoolError::StoreFull(subpool))
        }

        fn raw_pos(&self, addr: &StaticPoolAddr) -> Option<usize> {
            let (_, size) = self.pool_cfg.cfg.get(addr.pool_idx as usize)?;
            Some(addr.packet_idx as usize * size)
        }
    }

    impl PoolProvider for StaticMemoryPool {
        fn add(&mut self, data: &[u8]) -> Result<PoolAddr, PoolError> {
            let data_len = data.len();
            if data_len > POOL_MAX_SIZE {
                return Err(PoolError::DataTooLarge(data_len));
            }
            let addr = self.reserve(data_len)?;
            self.write(&addr, data)?;
            Ok(addr.into())
        }

        fn free_element<W: FnMut(&mut [u8])>(
            &mut self,
            len: usize,
            mut writer: W,
        ) -> Result<PoolAddr, PoolError> {
            if len > POOL_MAX_SIZE {
                return Err(PoolError::DataTooLarge(len));
            }
            let addr = self.reserve(len)?;
            let raw_pos = self.raw_pos(&addr).unwrap();
            let block =
                &mut self.pool.get_mut(addr.pool_idx as usize).unwrap()[raw_pos..raw_pos + len];
            writer(block);
            Ok(addr.into())
        }

        fn modify<U: FnMut(&mut [u8])>(
            &mut self,
            addr: &PoolAddr,
            mut updater: U,
        ) -> Result<(), PoolError> {
            let addr = StaticPoolAddr::from(*addr);
            let curr_size = self.addr_check(&addr)?;
            let raw_pos = self.raw_pos(&addr).unwrap();
            let block = &mut self.pool.get_mut(addr.pool_idx as usize).unwrap()
                [raw_pos..raw_pos + curr_size];
            updater(block);
            Ok(())
        }

        fn read(&self, addr: &PoolAddr, buf: &mut [u8]) -> Result<usize, PoolError> {
            let addr = StaticPoolAddr::from(*addr);
            let curr_size = self.addr_check(&addr)?;
            if buf.len() < curr_size {
                return Err(ByteConversionError::ToSliceTooSmall {
                    found: buf.len(),
                    expected: curr_size,
                }
                .into());
            }
            let raw_pos = self.raw_pos(&addr).unwrap();
            let block =
                &self.pool.get(addr.pool_idx as usize).unwrap()[raw_pos..raw_pos + curr_size];
            //block.copy_from_slice(&src);
            buf[..curr_size].copy_from_slice(block);
            Ok(curr_size)
        }

        fn delete(&mut self, addr: PoolAddr) -> Result<(), PoolError> {
            let addr = StaticPoolAddr::from(addr);
            self.addr_check(&addr)?;
            let block_size = self.pool_cfg.cfg.get(addr.pool_idx as usize).unwrap().1;
            let raw_pos = self.raw_pos(&addr).unwrap();
            let block = &mut self.pool.get_mut(addr.pool_idx as usize).unwrap()
                [raw_pos..raw_pos + block_size];
            let size_list = self.sizes_lists.get_mut(addr.pool_idx as usize).unwrap();
            size_list[addr.packet_idx as usize] = STORE_FREE;
            block.fill(0);
            Ok(())
        }

        fn has_element_at(&self, addr: &PoolAddr) -> Result<bool, PoolError> {
            let addr = StaticPoolAddr::from(*addr);
            self.validate_addr(&addr)?;
            let pool_idx = addr.pool_idx as usize;
            let size_list = self.sizes_lists.get(pool_idx).unwrap();
            let curr_size = size_list[addr.packet_idx as usize];
            if curr_size == STORE_FREE {
                return Ok(false);
            }
            Ok(true)
        }

        fn len_of_data(&self, addr: &PoolAddr) -> Result<usize, PoolError> {
            let addr = StaticPoolAddr::from(*addr);
            self.validate_addr(&addr)?;
            let pool_idx = addr.pool_idx as usize;
            let size_list = self.sizes_lists.get(pool_idx).unwrap();
            let size = size_list[addr.packet_idx as usize];
            Ok(match size {
                STORE_FREE => 0,
                _ => size,
            })
        }
    }

    impl PoolProviderWithGuards for StaticMemoryPool {
        fn modify_with_guard(&mut self, addr: PoolAddr) -> PoolRwGuard<Self> {
            PoolRwGuard::new(self, addr)
        }

        fn read_with_guard(&mut self, addr: PoolAddr) -> PoolGuard<Self> {
            PoolGuard::new(self, addr)
        }
    }
}

#[cfg(test)]
mod tests {
    use crate::pool::{
        PoolError, PoolGuard, PoolProvider, PoolProviderWithGuards, PoolRwGuard, StaticMemoryPool,
        StaticPoolAddr, StaticPoolConfig, StoreIdError, POOL_MAX_SIZE,
    };
    use std::vec;

    fn basic_small_pool() -> StaticMemoryPool {
        // 4 buckets of 4 bytes, 2 of 8 bytes and 1 of 16 bytes
        let pool_cfg = StaticPoolConfig::new(vec![(4, 4), (2, 8), (1, 16)], false);
        StaticMemoryPool::new(pool_cfg)
    }

    #[test]
    fn test_cfg() {
        // Values where number of buckets is 0 or size is too large should be removed
        let mut pool_cfg = StaticPoolConfig::new(vec![(0, 0), (1, 0), (2, POOL_MAX_SIZE)], false);
        pool_cfg.sanitize();
        assert_eq!(*pool_cfg.cfg(), vec![(1, 0)]);
        // Entries should be ordered according to bucket size
        pool_cfg = StaticPoolConfig::new(vec![(16, 6), (32, 3), (8, 12)], false);
        pool_cfg.sanitize();
        assert_eq!(*pool_cfg.cfg(), vec![(32, 3), (16, 6), (8, 12)]);
        // Unstable sort is used, so order of entries with same block length should not matter
        pool_cfg = StaticPoolConfig::new(vec![(12, 12), (14, 16), (10, 12)], false);
        pool_cfg.sanitize();
        assert!(
            *pool_cfg.cfg() == vec![(12, 12), (10, 12), (14, 16)]
                || *pool_cfg.cfg() == vec![(10, 12), (12, 12), (14, 16)]
        );
    }

    #[test]
    fn test_add_and_read() {
        let mut local_pool = basic_small_pool();
        let mut test_buf: [u8; 16] = [0; 16];
        for (i, val) in test_buf.iter_mut().enumerate() {
            *val = i as u8;
        }
        let mut other_buf: [u8; 16] = [0; 16];
        let addr = local_pool.add(&test_buf).expect("Adding data failed");
        // Read back data and verify correctness
        let res = local_pool.read(&addr, &mut other_buf);
        assert!(res.is_ok());
        let read_len = res.unwrap();
        assert_eq!(read_len, 16);
        for (i, &val) in other_buf.iter().enumerate() {
            assert_eq!(val, i as u8);
        }
    }

    #[test]
    fn test_add_smaller_than_full_slot() {
        let mut local_pool = basic_small_pool();
        let test_buf: [u8; 12] = [0; 12];
        let addr = local_pool.add(&test_buf).expect("Adding data failed");
        let res = local_pool
            .read(&addr, &mut [0; 12])
            .expect("Read back failed");
        assert_eq!(res, 12);
    }

    #[test]
    fn test_delete() {
        let mut local_pool = basic_small_pool();
        let test_buf: [u8; 16] = [0; 16];
        let addr = local_pool.add(&test_buf).expect("Adding data failed");
        // Delete the data
        let res = local_pool.delete(addr);
        assert!(res.is_ok());
        let mut writer = |buf: &mut [u8]| {
            assert_eq!(buf.len(), 12);
        };
        // Verify that the slot is free by trying to get a reference to it
        let res = local_pool.free_element(12, &mut writer);
        assert!(res.is_ok());
        let addr = res.unwrap();
        assert_eq!(
            addr,
            u64::from(StaticPoolAddr {
                pool_idx: 2,
                packet_idx: 0
            })
        );
    }

    #[test]
    fn test_modify() {
        let mut local_pool = basic_small_pool();
        let mut test_buf: [u8; 16] = [0; 16];
        for (i, val) in test_buf.iter_mut().enumerate() {
            *val = i as u8;
        }
        let addr = local_pool.add(&test_buf).expect("Adding data failed");

        {
            // Verify that the slot is free by trying to get a reference to it
            local_pool
                .modify(&addr, &mut |buf: &mut [u8]| {
                    buf[0] = 0;
                    buf[1] = 0x42;
                })
                .expect("Modifying data failed");
        }

        local_pool
            .read(&addr, &mut test_buf)
            .expect("Reading back data failed");
        assert_eq!(test_buf[0], 0);
        assert_eq!(test_buf[1], 0x42);
        assert_eq!(test_buf[2], 2);
        assert_eq!(test_buf[3], 3);
    }

    #[test]
    fn test_consecutive_reservation() {
        let mut local_pool = basic_small_pool();
        // Reserve two smaller blocks consecutively and verify that the third reservation fails
        let res = local_pool.free_element(8, |_| {});
        assert!(res.is_ok());
        let addr0 = res.unwrap();
        let res = local_pool.free_element(8, |_| {});
        assert!(res.is_ok());
        let addr1 = res.unwrap();
        let res = local_pool.free_element(8, |_| {});
        assert!(res.is_err());
        let err = res.unwrap_err();
        assert_eq!(err, PoolError::StoreFull(1));

        // Verify that the two deletions are successful
        assert!(local_pool.delete(addr0).is_ok());
        assert!(local_pool.delete(addr1).is_ok());
    }

    #[test]
    fn test_read_does_not_exist() {
        let local_pool = basic_small_pool();
        // Try to access data which does not exist
        let res = local_pool.read(
            &StaticPoolAddr {
                packet_idx: 0,
                pool_idx: 0,
            }
            .into(),
            &mut [],
        );
        assert!(res.is_err());
        assert!(matches!(
            res.unwrap_err(),
            PoolError::DataDoesNotExist { .. }
        ));
    }

    #[test]
    fn test_store_full() {
        let mut local_pool = basic_small_pool();
        let test_buf: [u8; 16] = [0; 16];
        assert!(local_pool.add(&test_buf).is_ok());
        // The subpool is now full and the call should fail accordingly
        let res = local_pool.add(&test_buf);
        assert!(res.is_err());
        let err = res.unwrap_err();
        assert!(matches!(err, PoolError::StoreFull { .. }));
        if let PoolError::StoreFull(subpool) = err {
            assert_eq!(subpool, 2);
        }
    }

    #[test]
    fn test_invalid_pool_idx() {
        let local_pool = basic_small_pool();
        let addr = StaticPoolAddr {
            pool_idx: 3,
            packet_idx: 0,
        }
        .into();
        let res = local_pool.read(&addr, &mut []);
        assert!(res.is_err());
        let err = res.unwrap_err();
        assert!(matches!(
            err,
            PoolError::InvalidStoreId(StoreIdError::InvalidSubpool(3), Some(_))
        ));
    }

    #[test]
    fn test_invalid_packet_idx() {
        let local_pool = basic_small_pool();
        let addr = StaticPoolAddr {
            pool_idx: 2,
            packet_idx: 1,
        };
        assert_eq!(addr.raw(), 0x00020001);
        let res = local_pool.read(&addr.into(), &mut []);
        assert!(res.is_err());
        let err = res.unwrap_err();
        assert!(matches!(
            err,
            PoolError::InvalidStoreId(StoreIdError::InvalidPacketIdx(1), Some(_))
        ));
    }

    #[test]
    fn test_add_too_large() {
        let mut local_pool = basic_small_pool();
        let data_too_large = [0; 20];
        let res = local_pool.add(&data_too_large);
        assert!(res.is_err());
        let err = res.unwrap_err();
        assert_eq!(err, PoolError::DataTooLarge(20));
    }

    #[test]
    fn test_data_too_large_1() {
        let mut local_pool = basic_small_pool();
        let res = local_pool.free_element(POOL_MAX_SIZE + 1, |_| {});
        assert!(res.is_err());
        assert_eq!(res.unwrap_err(), PoolError::DataTooLarge(POOL_MAX_SIZE + 1));
    }

    #[test]
    fn test_free_element_too_large() {
        let mut local_pool = basic_small_pool();
        // Try to request a slot which is too large
        let res = local_pool.free_element(20, |_| {});
        assert!(res.is_err());
        assert_eq!(res.unwrap_err(), PoolError::DataTooLarge(20));
    }

    #[test]
    fn test_pool_guard_deletion_man_creation() {
        let mut local_pool = basic_small_pool();
        let test_buf: [u8; 16] = [0; 16];
        let addr = local_pool.add(&test_buf).expect("Adding data failed");
        let read_guard = PoolGuard::new(&mut local_pool, addr);
        drop(read_guard);
        assert!(!local_pool.has_element_at(&addr).expect("Invalid address"));
    }

    #[test]
    fn test_pool_guard_deletion() {
        let mut local_pool = basic_small_pool();
        let test_buf: [u8; 16] = [0; 16];
        let addr = local_pool.add(&test_buf).expect("Adding data failed");
        let read_guard = local_pool.read_with_guard(addr);
        drop(read_guard);
        assert!(!local_pool.has_element_at(&addr).expect("Invalid address"));
    }

    #[test]
    fn test_pool_guard_with_release() {
        let mut local_pool = basic_small_pool();
        let test_buf: [u8; 16] = [0; 16];
        let addr = local_pool.add(&test_buf).expect("Adding data failed");
        let mut read_guard = PoolGuard::new(&mut local_pool, addr);
        read_guard.release();
        drop(read_guard);
        assert!(local_pool.has_element_at(&addr).expect("Invalid address"));
    }

    #[test]
    fn test_pool_modify_guard_man_creation() {
        let mut local_pool = basic_small_pool();
        let test_buf: [u8; 16] = [0; 16];
        let addr = local_pool.add(&test_buf).expect("Adding data failed");
        let mut rw_guard = PoolRwGuard::new(&mut local_pool, addr);
        rw_guard.update(&mut |_| {}).expect("modify failed");
        drop(rw_guard);
        assert!(!local_pool.has_element_at(&addr).expect("Invalid address"));
    }

    #[test]
    fn test_pool_modify_guard() {
        let mut local_pool = basic_small_pool();
        let test_buf: [u8; 16] = [0; 16];
        let addr = local_pool.add(&test_buf).expect("Adding data failed");
        let mut rw_guard = local_pool.modify_with_guard(addr);
        rw_guard.update(&mut |_| {}).expect("modify failed");
        drop(rw_guard);
        assert!(!local_pool.has_element_at(&addr).expect("Invalid address"));
    }

    #[test]
    fn modify_pool_index_above_0() {
        let mut local_pool = basic_small_pool();
        let test_buf_0: [u8; 4] = [1; 4];
        let test_buf_1: [u8; 4] = [2; 4];
        let test_buf_2: [u8; 4] = [3; 4];
        let test_buf_3: [u8; 4] = [4; 4];
        let addr0 = local_pool.add(&test_buf_0).expect("Adding data failed");
        let addr1 = local_pool.add(&test_buf_1).expect("Adding data failed");
        let addr2 = local_pool.add(&test_buf_2).expect("Adding data failed");
        let addr3 = local_pool.add(&test_buf_3).expect("Adding data failed");
        local_pool
            .modify(&addr0, |buf| {
                assert_eq!(buf, test_buf_0);
            })
            .expect("Modifying data failed");
        local_pool
            .modify(&addr1, |buf| {
                assert_eq!(buf, test_buf_1);
            })
            .expect("Modifying data failed");
        local_pool
            .modify(&addr2, |buf| {
                assert_eq!(buf, test_buf_2);
            })
            .expect("Modifying data failed");
        local_pool
            .modify(&addr3, |buf| {
                assert_eq!(buf, test_buf_3);
            })
            .expect("Modifying data failed");
    }

    #[test]
    fn test_spills_to_higher_subpools() {
        let pool_cfg = StaticPoolConfig::new(vec![(2, 8), (2, 16)], true);
        let mut local_pool = StaticMemoryPool::new(pool_cfg);
        local_pool.free_element(8, |_| {}).unwrap();
        local_pool.free_element(8, |_| {}).unwrap();
        let mut in_larger_subpool_now = local_pool.free_element(8, |_| {});
        assert!(in_larger_subpool_now.is_ok());
        let generic_addr = in_larger_subpool_now.unwrap();
        let pool_addr = StaticPoolAddr::from(generic_addr);
        assert_eq!(pool_addr.pool_idx, 1);
        assert_eq!(pool_addr.packet_idx, 0);
        assert!(local_pool.has_element_at(&generic_addr).unwrap());
        in_larger_subpool_now = local_pool.free_element(8, |_| {});
        assert!(in_larger_subpool_now.is_ok());
        let generic_addr = in_larger_subpool_now.unwrap();
        let pool_addr = StaticPoolAddr::from(generic_addr);
        assert_eq!(pool_addr.pool_idx, 1);
        assert_eq!(pool_addr.packet_idx, 1);
        assert!(local_pool.has_element_at(&generic_addr).unwrap());
    }

    #[test]
    fn test_spillage_fails_as_well() {
        let pool_cfg = StaticPoolConfig::new(vec![(1, 8), (1, 16)], true);
        let mut local_pool = StaticMemoryPool::new(pool_cfg);
        local_pool.free_element(8, |_| {}).unwrap();
        local_pool.free_element(8, |_| {}).unwrap();
        let should_fail = local_pool.free_element(8, |_| {});
        assert!(should_fail.is_err());
        if let Err(err) = should_fail {
            assert_eq!(err, PoolError::StoreFull(1));
        } else {
            panic!("unexpected store address");
        }
    }

    #[test]
    fn test_spillage_works_across_multiple_subpools() {
        let pool_cfg = StaticPoolConfig::new(vec![(1, 8), (1, 12), (1, 16)], true);
        let mut local_pool = StaticMemoryPool::new(pool_cfg);
        local_pool.free_element(8, |_| {}).unwrap();
        local_pool.free_element(12, |_| {}).unwrap();
        let in_larger_subpool_now = local_pool.free_element(8, |_| {});
        assert!(in_larger_subpool_now.is_ok());
        let generic_addr = in_larger_subpool_now.unwrap();
        let pool_addr = StaticPoolAddr::from(generic_addr);
        assert_eq!(pool_addr.pool_idx, 2);
        assert_eq!(pool_addr.packet_idx, 0);
        assert!(local_pool.has_element_at(&generic_addr).unwrap());
    }

    #[test]
    fn test_spillage_fails_across_multiple_subpools() {
        let pool_cfg = StaticPoolConfig::new(vec![(1, 8), (1, 12), (1, 16)], true);
        let mut local_pool = StaticMemoryPool::new(pool_cfg);
        local_pool.free_element(8, |_| {}).unwrap();
        local_pool.free_element(12, |_| {}).unwrap();
        local_pool.free_element(16, |_| {}).unwrap();
        let should_fail = local_pool.free_element(8, |_| {});
        assert!(should_fail.is_err());
        if let Err(err) = should_fail {
            assert_eq!(err, PoolError::StoreFull(2));
        } else {
            panic!("unexpected store address");
        }
    }
}