1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
use crate::inet::{
ip, ipv4::IpV4Address, unspecified::Unspecified, ExplicitCongestionNotification, IpAddress,
SocketAddress, SocketAddressV4,
};
use core::fmt;
use s2n_codec::zerocopy::U16;
//= https://www.rfc-editor.org/rfc/rfc2373#section-2.0
//# IPv6 addresses are 128-bit identifiers for interfaces and sets of interfaces.
const IPV6_LEN: usize = 128 / 8;
define_inet_type!(
pub struct IpV6Address {
octets: [u8; IPV6_LEN],
}
);
impl IpV6Address {
/// An unspecified IpV6Address
pub const UNSPECIFIED: Self = Self {
octets: [0; IPV6_LEN],
};
#[inline]
pub const fn segments(&self) -> [u16; 8] {
let octets = &self.octets;
[
u16::from_be_bytes([octets[0], octets[1]]),
u16::from_be_bytes([octets[2], octets[3]]),
u16::from_be_bytes([octets[4], octets[5]]),
u16::from_be_bytes([octets[6], octets[7]]),
u16::from_be_bytes([octets[8], octets[9]]),
u16::from_be_bytes([octets[10], octets[11]]),
u16::from_be_bytes([octets[12], octets[13]]),
u16::from_be_bytes([octets[14], octets[15]]),
]
}
/// Converts the IP address into IPv4 if it is mapped, otherwise the address is unchanged
#[inline]
pub const fn unmap(self) -> IpAddress {
match self.segments() {
// special-case unspecified and loopback
[0, 0, 0, 0, 0, 0, 0, 0] => IpAddress::Ipv6(self),
[0, 0, 0, 0, 0, 0, 0, 1] => IpAddress::Ipv6(self),
//= https://www.rfc-editor.org/rfc/rfc4291#section-2.5.5.1
//# The format of the "IPv4-Compatible IPv6 address" is as
//# follows:
//#
//# | 80 bits | 16 | 32 bits |
//# +--------------------------------------+--------------------------+
//# |0000..............................0000|0000| IPv4 address |
//# +--------------------------------------+----+---------------------+
//= https://www.rfc-editor.org/rfc/rfc4291#section-2.5.5.2
//# The format of the "IPv4-mapped IPv6
//# address" is as follows:
//#
//# | 80 bits | 16 | 32 bits |
//# +--------------------------------------+--------------------------+
//# |0000..............................0000|FFFF| IPv4 address |
//# +--------------------------------------+----+---------------------+
//= https://www.rfc-editor.org/rfc/rfc6052#section-2.1
//# This document reserves a "Well-Known Prefix" for use in an
//# algorithmic mapping. The value of this IPv6 prefix is:
//#
//# 64:ff9b::/96
[0, 0, 0, 0, 0, 0, ab, cd]
| [0, 0, 0, 0, 0, 0xffff, ab, cd]
| [0x64, 0xff9b, 0, 0, 0, 0, ab, cd] => {
let [a, b] = u16::to_be_bytes(ab);
let [c, d] = u16::to_be_bytes(cd);
IpAddress::Ipv4(IpV4Address {
octets: [a, b, c, d],
})
}
_ => IpAddress::Ipv6(self),
}
}
/// Returns the [`ip::UnicastScope`] for the given address
///
/// See the [IANA Registry](https://www.iana.org/assignments/ipv6-address-space/ipv6-address-space.xhtml)
/// for more details.
///
/// ```
/// use s2n_quic_core::inet::{IpV4Address, IpV6Address, ip::UnicastScope::*};
///
/// assert_eq!(IpV6Address::from([0, 0, 0, 0, 0, 0, 0, 0]).unicast_scope(), None);
/// assert_eq!(IpV6Address::from([0, 0, 0, 0, 0, 0, 0, 1]).unicast_scope(), Some(Loopback));
/// assert_eq!(IpV6Address::from([0xff0e, 0, 0, 0, 0, 0, 0, 0]).unicast_scope(), None);
/// assert_eq!(IpV6Address::from([0xfe80, 0, 0, 0, 0, 0, 0, 0]).unicast_scope(), Some(LinkLocal));
/// assert_eq!(IpV6Address::from([0xfc02, 0, 0, 0, 0, 0, 0, 0]).unicast_scope(), Some(Private));
/// // documentation
/// assert_eq!(IpV6Address::from([0x2001, 0xdb8, 0, 0, 0, 0, 0, 0]).unicast_scope(), None);
/// // benchmarking
/// assert_eq!(IpV6Address::from([0x2001, 0x0200, 0, 0, 0, 0, 0, 0]).unicast_scope(), None);
/// // IPv4-mapped address
/// assert_eq!(IpV4Address::from([92, 88, 99, 123]).to_ipv6_mapped().unicast_scope(), Some(Global));
/// ```
#[inline]
pub const fn unicast_scope(self) -> Option<ip::UnicastScope> {
use ip::UnicastScope::*;
// If this is an IpV4 ip, delegate to that implementation
if let IpAddress::Ipv4(ip) = self.unmap() {
return ip.unicast_scope();
}
// https://www.iana.org/assignments/ipv6-address-space/ipv6-address-space.xhtml
match self.segments() {
//= https://www.rfc-editor.org/rfc/rfc4291#section-2.5.2
//# The address 0:0:0:0:0:0:0:0 is called the unspecified address.
[0, 0, 0, 0, 0, 0, 0, 0] => None,
//= https://www.rfc-editor.org/rfc/rfc4291#section-2.5.3
//# The unicast address 0:0:0:0:0:0:0:1 is called the loopback address.
[0, 0, 0, 0, 0, 0, 0, 1] => Some(Loopback),
//= https://www.rfc-editor.org/rfc/rfc6666#section-4
//# Per this document, IANA has recorded the allocation of the IPv6
//# address prefix 0100::/64 as a Discard-Only Prefix in the "Internet
//# Protocol Version 6 Address Space" and added the prefix to the "IANA
//# IPv6 Special Purpose Address Registry" [IANA-IPV6REG].
[0x0100, 0, 0, 0, ..] => None,
//= https://www.rfc-editor.org/rfc/rfc7723#section-4.2
//# +----------------------+-------------------------------------------+
//# | Attribute | Value |
//# +----------------------+-------------------------------------------+
//# | Address Block | 2001:1::1/128 |
//# | Name | Port Control Protocol Anycast |
//# | RFC | RFC 7723 (this document) |
//# | Allocation Date | October 2015 |
//# | Termination Date | N/A |
//# | Source | True |
//# | Destination | True |
//# | Forwardable | True |
//# | Global | True |
//# | Reserved-by-Protocol | False |
//# +----------------------+-------------------------------------------+
[0x2001, 0x1, 0, 0, 0, 0, 0, 0x1] => Some(Global),
//= https://www.rfc-editor.org/rfc/rfc8155#section-8.2
//# +----------------------+-------------------------------------------+
//# | Attribute | Value |
//# +----------------------+-------------------------------------------+
//# | Address Block | 2001:1::2/128 |
//# | Name | Traversal Using Relays around NAT Anycast |
//# | RFC | RFC 8155 |
//# | Allocation Date | 2017-02 |
//# | Termination Date | N/A |
//# | Source | True |
//# | Destination | True |
//# | Forwardable | True |
//# | Global | True |
//# | Reserved-by-Protocol | False |
//# +----------------------+-------------------------------------------+
[0x2001, 0x1, 0, 0, 0, 0, 0, 0x2] => Some(Global),
//= https://www.rfc-editor.org/rfc/rfc6890#section-2.2.3
//# +----------------------+---------------------------+
//# | Attribute | Value |
//# +----------------------+---------------------------+
//# | Address Block | 2001::/23 |
//# | Name | IETF Protocol Assignments |
//# | RFC | [RFC2928] |
//# | Allocation Date | September 2000 |
//# | Termination Date | N/A |
//# | Source | False[1] |
//# | Destination | False[1] |
//# | Forwardable | False[1] |
//# | Global | False[1] |
//# | Reserved-by-Protocol | False |
//# +----------------------+---------------------------+
[0x2001, 0x0..=0x01ff, ..] => None,
//= https://www.rfc-editor.org/rfc/rfc5180#section-8
//# The IANA has allocated 2001:0200::/48 for IPv6 benchmarking, which is
//# a 48-bit prefix from the RFC 4773 pool.
[0x2001, 0x0200, 0, ..] => None,
//= https://www.rfc-editor.org/rfc/rfc3849#section-4
//# IANA is to record the allocation of the IPv6 global unicast address
//# prefix 2001:DB8::/32 as a documentation-only prefix in the IPv6
//# address registry.
[0x2001, 0xdb8, ..] => None,
//= https://www.rfc-editor.org/rfc/rfc4193#section-8
//# The IANA has assigned the FC00::/7 prefix to "Unique Local Unicast".
[0xfc00..=0xfdff, ..] => {
//= https://www.rfc-editor.org/rfc/rfc4193#section-1
//# They are not
//# expected to be routable on the global Internet. They are routable
//# inside of a more limited area such as a site. They may also be
//# routed between a limited set of sites.
Some(Private)
}
//= https://www.rfc-editor.org/rfc/rfc4291#section-2.5.6
//# Link-Local addresses have the following format:
//# | 10 |
//# | bits | 54 bits | 64 bits |
//# +----------+-------------------------+----------------------------+
//# |1111111010| 0 | interface ID |
//# +----------+-------------------------+----------------------------+
[0xfe80..=0xfebf, ..] => Some(LinkLocal),
//= https://www.rfc-editor.org/rfc/rfc4291#section-2.7
//# binary 11111111 at the start of the address identifies the address
//# as being a multicast address.
[0xff00..=0xffff, ..] => None,
// Everything else is considered globally-reachable
_ => Some(Global),
}
}
#[inline]
pub fn with_port(self, port: u16) -> SocketAddressV6 {
SocketAddressV6 {
ip: self,
port: port.into(),
}
}
}
impl fmt::Debug for IpV6Address {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
write!(fmt, "IPv6Address({self})")
}
}
impl fmt::Display for IpV6Address {
#[allow(clippy::many_single_char_names)]
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
match self.segments() {
[0, 0, 0, 0, 0, 0, 0, 0] => write!(fmt, "::"),
[0, 0, 0, 0, 0, 0, 0, 1] => write!(fmt, "::1"),
// Ipv4 Compatible address
[0, 0, 0, 0, 0, 0, g, h] => write!(
fmt,
"::{}.{}.{}.{}",
(g >> 8) as u8,
g as u8,
(h >> 8) as u8,
h as u8
),
// Ipv4-Mapped address
[0, 0, 0, 0, 0, 0xffff, g, h] => write!(
fmt,
"::ffff:{}.{}.{}.{}",
(g >> 8) as u8,
g as u8,
(h >> 8) as u8,
h as u8
),
// TODO better formatting
[a, b, c, d, e, f, g, h] => {
write!(fmt, "{a:x}:{b:x}:{c:x}:{d:x}:{e:x}:{f:x}:{g:x}:{h:x}")
}
}
}
}
impl Unspecified for IpV6Address {
#[inline]
fn is_unspecified(&self) -> bool {
Self::UNSPECIFIED.eq(self)
}
}
test_inet_snapshot!(ipv6, ipv6_snapshot_test, IpV6Address);
define_inet_type!(
pub struct SocketAddressV6 {
ip: IpV6Address,
port: U16,
}
);
impl SocketAddressV6 {
/// An unspecified SocketAddressV6
pub const UNSPECIFIED: Self = Self {
ip: IpV6Address::UNSPECIFIED,
port: U16::ZERO,
};
#[inline]
pub const fn ip(&self) -> &IpV6Address {
&self.ip
}
#[inline]
pub fn port(&self) -> u16 {
self.port.into()
}
#[inline]
pub fn set_port(&mut self, port: u16) {
self.port.set(port)
}
/// Converts the IP address into IPv4 if it is mapped, otherwise the address is unchanged
#[inline]
pub fn unmap(self) -> SocketAddress {
match self.ip.unmap() {
IpAddress::Ipv4(addr) => SocketAddressV4::new(addr, self.port).into(),
IpAddress::Ipv6(_) => self.into(),
}
}
#[inline]
pub const fn unicast_scope(&self) -> Option<ip::UnicastScope> {
self.ip.unicast_scope()
}
}
impl fmt::Debug for SocketAddressV6 {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
write!(fmt, "SocketAddressV6({self})")
}
}
impl fmt::Display for SocketAddressV6 {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
write!(fmt, "[{}]:{:?}", self.ip, self.port)
}
}
impl Unspecified for SocketAddressV6 {
#[inline]
fn is_unspecified(&self) -> bool {
Self::UNSPECIFIED.eq(self)
}
}
test_inet_snapshot!(socket_v6, socket_v6_snapshot_test, SocketAddressV6);
impl From<[u8; IPV6_LEN]> for IpV6Address {
#[inline]
fn from(octets: [u8; IPV6_LEN]) -> Self {
Self { octets }
}
}
impl From<[u16; IPV6_LEN / 2]> for IpV6Address {
#[inline]
fn from(octets: [u16; IPV6_LEN / 2]) -> Self {
macro_rules! convert {
($($segment:ident),*) => {{
let [$($segment),*] = octets;
$(
let $segment = u16::to_be_bytes($segment);
)*
Self {
octets: [
$(
$segment[0],
$segment[1],
)*
]
}
}}
}
convert!(a, b, c, d, e, f, g, h)
}
}
impl From<IpV6Address> for [u8; IPV6_LEN] {
#[inline]
fn from(v: IpV6Address) -> Self {
v.octets
}
}
impl From<IpV6Address> for [u16; IPV6_LEN / 2] {
#[inline]
fn from(v: IpV6Address) -> Self {
v.segments()
}
}
//= https://www.rfc-editor.org/rfc/rfc8200#section-3
//# +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
//# |Version| Traffic Class | Flow Label |
//# +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
//# | Payload Length | Next Header | Hop Limit |
//# +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
//# | |
//# + +
//# | |
//# + Source Address +
//# | |
//# + +
//# | |
//# +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
//# | |
//# + +
//# | |
//# + Destination Address +
//# | |
//# + +
//# | |
//# +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
define_inet_type!(
pub struct Header {
vtcfl: Vtcfl,
payload_len: U16,
next_header: ip::Protocol,
hop_limit: u8,
source: IpV6Address,
destination: IpV6Address,
}
);
impl fmt::Debug for Header {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_struct("ipv6::Header")
.field("version", &self.vtcfl.version())
.field("dscp", &self.vtcfl.dscp())
.field("ecn", &self.vtcfl.ecn())
.field(
"flow_label",
&format_args!("0x{:05x}", self.vtcfl.flow_label()),
)
.field("payload_len", &self.payload_len)
.field("next_header", &self.next_header)
.field("hop_limit", &self.hop_limit)
.field("source", &self.source)
.field("destination", &self.destination)
.finish()
}
}
impl Header {
/// Swaps the direction of the header
#[inline]
pub fn swap(&mut self) {
core::mem::swap(&mut self.source, &mut self.destination)
}
#[inline]
pub const fn vtcfl(&self) -> &Vtcfl {
&self.vtcfl
}
#[inline]
pub fn vtcfl_mut(&mut self) -> &mut Vtcfl {
&mut self.vtcfl
}
#[inline]
pub const fn payload_len(&self) -> &U16 {
&self.payload_len
}
#[inline]
pub fn payload_len_mut(&mut self) -> &mut U16 {
&mut self.payload_len
}
#[inline]
pub const fn next_header(&self) -> &ip::Protocol {
&self.next_header
}
#[inline]
pub fn next_header_mut(&mut self) -> &mut ip::Protocol {
&mut self.next_header
}
#[inline]
pub const fn hop_limit(&self) -> &u8 {
&self.hop_limit
}
#[inline]
pub fn hop_limit_mut(&mut self) -> &mut u8 {
&mut self.hop_limit
}
#[inline]
pub const fn source(&self) -> &IpV6Address {
&self.source
}
#[inline]
pub fn source_mut(&mut self) -> &mut IpV6Address {
&mut self.source
}
#[inline]
pub const fn destination(&self) -> &IpV6Address {
&self.destination
}
#[inline]
pub fn destination_mut(&mut self) -> &mut IpV6Address {
&mut self.destination
}
}
// This struct covers the bits for Version, Traffic Class, and Flow Label.
//
// Rust doesn't have the ability to do arbitrary bit sized values so we have to round up to the
// nearest byte.
define_inet_type!(
pub struct Vtcfl {
octets: [u8; 4],
}
);
impl fmt::Debug for Vtcfl {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_struct("ipv6::Vtf")
.field("version", &self.version())
.field("dscp", &self.dscp())
.field("ecn", &self.ecn())
.field("flow_label", &format_args!("0x{:05x}", self.flow_label()))
.finish()
}
}
impl Vtcfl {
#[inline]
pub const fn version(&self) -> u8 {
self.octets[0] >> 4
}
#[inline]
pub fn set_version(&mut self, version: u8) -> &mut Self {
self.octets[0] = version << 4 | self.octets[0] & 0x0F;
self
}
#[inline]
pub fn dscp(&self) -> u8 {
let value = self.octets[0] << 4 | self.octets[1] >> 4;
value >> 2
}
#[inline]
pub fn set_dscp(&mut self, value: u8) -> &mut Self {
let value = value << 2;
self.octets[0] = self.octets[0] & 0xF0 | (value >> 4);
self.octets[1] = (value << 4) | self.octets[1] & 0b11_1111;
self
}
#[inline]
pub fn ecn(&self) -> ExplicitCongestionNotification {
ExplicitCongestionNotification::new(self.octets[1] >> 4 & 0b11)
}
#[inline]
pub fn set_ecn(&mut self, ecn: ExplicitCongestionNotification) -> &mut Self {
self.octets[1] = (self.octets[1] & !(0b11 << 4)) | (ecn as u8) << 4;
self
}
#[inline]
pub const fn flow_label(&self) -> u32 {
u32::from_be_bytes([0, self.octets[1] & 0x0F, self.octets[2], self.octets[3]])
}
#[inline]
pub fn set_flow_label(&mut self, flow_label: u32) -> &mut Self {
let bytes = flow_label.to_be_bytes();
self.octets[1] = self.octets[1] & 0xF0 | bytes[1] & 0x0F;
self.octets[2] = bytes[2];
self.octets[3] = bytes[3];
self
}
}
#[cfg(any(test, feature = "std"))]
mod std_conversion {
use super::*;
use std::net;
impl From<net::Ipv6Addr> for IpV6Address {
fn from(address: net::Ipv6Addr) -> Self {
(&address).into()
}
}
impl From<&net::Ipv6Addr> for IpV6Address {
fn from(address: &net::Ipv6Addr) -> Self {
address.octets().into()
}
}
impl From<IpV6Address> for net::Ipv6Addr {
fn from(address: IpV6Address) -> Self {
address.octets.into()
}
}
impl From<net::SocketAddrV6> for SocketAddressV6 {
fn from(address: net::SocketAddrV6) -> Self {
let ip = address.ip().into();
let port = address.port().into();
Self { ip, port }
}
}
impl From<(net::Ipv6Addr, u16)> for SocketAddressV6 {
fn from((ip, port): (net::Ipv6Addr, u16)) -> Self {
Self::new(ip, port)
}
}
impl From<SocketAddressV6> for net::SocketAddrV6 {
fn from(address: SocketAddressV6) -> Self {
let ip = address.ip.into();
let port = address.port.into();
Self::new(ip, port, 0, 0)
}
}
impl From<&SocketAddressV6> for net::SocketAddrV6 {
fn from(address: &SocketAddressV6) -> Self {
let ip = address.ip.into();
let port = address.port.into();
Self::new(ip, port, 0, 0)
}
}
impl From<SocketAddressV6> for net::SocketAddr {
fn from(address: SocketAddressV6) -> Self {
let addr: net::SocketAddrV6 = address.into();
addr.into()
}
}
impl From<&SocketAddressV6> for net::SocketAddr {
fn from(address: &SocketAddressV6) -> Self {
let addr: net::SocketAddrV6 = address.into();
addr.into()
}
}
impl net::ToSocketAddrs for SocketAddressV6 {
type Iter = std::iter::Once<net::SocketAddr>;
fn to_socket_addrs(&self) -> std::io::Result<Self::Iter> {
let ip = self.ip.into();
let port = self.port.into();
let addr = net::SocketAddrV6::new(ip, port, 0, 0);
Ok(std::iter::once(addr.into()))
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use bolero::{check, generator::*};
use s2n_codec::{DecoderBuffer, DecoderBufferMut};
/// Asserts the UnicastScope returned matches a known implementation
#[test]
#[cfg_attr(kani, kani::proof, kani::unwind(17), kani::solver(kissat))]
fn scope_test() {
let g = gen::<[u8; 16]>().map_gen(IpV6Address::from);
check!().with_generator(g).cloned().for_each(|subject| {
use ip::UnicastScope::*;
// the ipv4 scopes are tested elsewhere there so we just make sure the scopes match
if let IpAddress::Ipv4(ipv4) = subject.unmap() {
assert_eq!(ipv4.unicast_scope(), subject.unicast_scope());
return;
}
let expected = std::net::Ipv6Addr::from(subject);
let network = ip_network::Ipv6Network::from(expected);
match subject.unicast_scope() {
Some(Global) => {
// Site-local addresses are deprecated but the `ip_network` still partitions
// them out
// See: https://datatracker.ietf.org/doc/html/rfc3879
assert!(network.is_global() || network.is_unicast_site_local());
}
Some(Private) => {
assert!(network.is_unique_local());
}
Some(Loopback) => {
assert!(expected.is_loopback());
}
Some(LinkLocal) => {
assert!(network.is_unicast_link_local());
}
None => {
assert!(
expected.is_multicast()
|| expected.is_unspecified()
// Discard space
|| subject.segments()[0] == 0x0100
// IETF Reserved
|| subject.segments()[0] == 0x2001
);
}
}
})
}
#[test]
#[cfg_attr(miri, ignore)]
fn snapshot_test() {
let mut buffer = vec![0u8; core::mem::size_of::<Header>()];
for (idx, byte) in buffer.iter_mut().enumerate() {
*byte = idx as u8;
}
let decoder = DecoderBuffer::new(&buffer);
let (header, _) = decoder.decode::<&Header>().unwrap();
insta::assert_debug_snapshot!("snapshot_test", header);
for byte in &mut buffer {
*byte = 255;
}
let decoder = DecoderBuffer::new(&buffer);
let (header, _) = decoder.decode::<&Header>().unwrap();
insta::assert_debug_snapshot!("snapshot_filled_test", header);
}
#[test]
#[cfg_attr(kani, kani::proof, kani::unwind(17), kani::solver(kissat))]
fn header_getter_setter_test() {
check!().with_type::<Header>().for_each(|expected| {
let mut buffer = [255u8; core::mem::size_of::<Header>()];
let decoder = DecoderBufferMut::new(&mut buffer);
let (header, _) = decoder.decode::<&mut Header>().unwrap();
{
// use all of the getters and setters to copy over each field
header
.vtcfl_mut()
.set_version(expected.vtcfl().version())
.set_dscp(expected.vtcfl().dscp())
.set_ecn(expected.vtcfl().ecn())
.set_flow_label(expected.vtcfl().flow_label());
*header.hop_limit_mut() = *expected.hop_limit();
*header.next_header_mut() = *expected.next_header();
header.payload_len_mut().set(expected.payload_len().get());
*header.source_mut() = *expected.source();
*header.destination_mut() = *expected.destination();
}
let decoder = DecoderBuffer::new(&buffer);
let (actual, _) = decoder.decode::<&Header>().unwrap();
{
// make sure all of the values match
assert_eq!(expected.vtcfl().version(), expected.vtcfl().version());
assert_eq!(expected.vtcfl().dscp(), expected.vtcfl().dscp());
assert_eq!(expected.vtcfl().ecn(), expected.vtcfl().ecn());
assert_eq!(expected.vtcfl().flow_label(), expected.vtcfl().flow_label());
assert_eq!(
expected.vtcfl(),
actual.vtcfl(),
"\nexpected: {:?}\n actual: {:?}",
expected.as_bytes(),
actual.as_bytes()
);
assert_eq!(expected.hop_limit(), actual.hop_limit());
assert_eq!(expected.next_header(), actual.next_header());
assert_eq!(expected.payload_len(), actual.payload_len());
assert_eq!(expected.source(), actual.source());
assert_eq!(expected.destination(), actual.destination());
assert_eq!(
expected,
actual,
"\nexpected: {:?}\n actual: {:?}",
expected.as_bytes(),
actual.as_bytes()
);
}
})
}
#[test]
fn header_round_trip_test() {
check!().for_each(|buffer| {
s2n_codec::assert_codec_round_trip_bytes!(Header, buffer);
});
}
}