1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

//! This module contains data structures for buffering incoming and outgoing data
//! in Quic streams.

use crate::varint::VarInt;
use alloc::collections::{vec_deque, VecDeque};
use bytes::BytesMut;

mod request;
mod slot;

#[cfg(test)]
mod tests;

use request::Request;
use slot::Slot;

/// Enumerates error that can occur while inserting data into the Receive Buffer
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
pub enum ReceiveBufferError {
    /// An invalid data range was provided
    OutOfRange,
}

/// The default buffer size for slots that the [`ReceiveBuffer`] uses.
///
/// This value was picked as it is typically used for the default memory page size.
const MIN_BUFFER_ALLOCATION_SIZE: usize = 4096;

//= https://www.rfc-editor.org/rfc/rfc9000#section-2.2
//# Endpoints MUST be able to deliver stream data to an application as an
//# ordered byte-stream.

/// `ReceiveBuffer` is a buffer structure for combining chunks of bytes in an
/// ordered stream, which might arrive out of order.
///
/// `ReceiveBuffer` will accumulate the bytes, and provide them to its users
/// once a contiguous range of bytes at the current position of the stream has
/// been accumulated.
///
/// `ReceiveBuffer` is optimized for minimizing memory allocations and for
/// offering it's users chunks of sizes that minimize call overhead.
///
/// If data is received in smaller chunks, only the first chunk will trigger a
/// memory allocation. All other chunks can be copied into the already allocated
/// region.
///
/// When users want to consume data from the buffer, the consumable part of the
/// internal receive buffer is split off and passed back to the caller. Due to
/// this chunk being a view onto a reference-counted internal buffer of type
/// [`BytesMut`] this is also efficient and does not require additional memory
/// allocation or copy.
///
/// ## Usage
///
/// ```rust,ignore
/// use s2n_quic_transport::buffer::ReceiveBuffer;
///
/// let mut buffer = ReceiveBuffer::new();
///
/// // write a chunk of bytes at offset 4, which can not be consumed yet
/// assert!(buffer.write_at(4u32.into(), &[4, 5, 6, 7]).is_ok());
/// assert_eq!(0, buffer.len());
/// assert_eq!(None, buffer.pop());
///
/// // write a chunk of bytes at offset 0, which allows for consumption
/// assert!(buffer.write_at(0u32.into(), &[0, 1, 2, 3]).is_ok());
/// assert_eq!(8, buffer.len());
///
/// // Pop chunks. Since they all fitted into a single internal buffer,
/// // they will be returned in combined fashion.
/// assert_eq!(&[0u8, 1, 2, 3, 4, 5, 6, 7], &buffer.pop().unwrap()[..]);
/// ```
#[derive(Debug)]
pub struct ReceiveBuffer {
    slots: VecDeque<Slot>,
    start_offset: u64,
}

impl Default for ReceiveBuffer {
    fn default() -> Self {
        Self::new()
    }
}

impl ReceiveBuffer {
    /// Creates a new `ReceiveBuffer`
    pub fn new() -> ReceiveBuffer {
        ReceiveBuffer {
            slots: VecDeque::new(),
            start_offset: 0,
        }
    }

    /// Returns the amount of bytes available for reading.
    /// This equals the amount of data that is stored in contiguous fashion at
    /// the start of the buffer.
    #[inline]
    pub fn len(&self) -> usize {
        self.report().0
    }

    /// Returns true if no bytes are available for reading
    #[inline]
    pub fn is_empty(&self) -> bool {
        self.len() == 0
    }

    /// Returns the number of bytes and chunks available for consumption
    #[inline]
    pub fn report(&self) -> (usize, usize) {
        let mut bytes = 0;
        let mut chunks = 0;
        for chunk in self.iter() {
            bytes += chunk.len();
            chunks += 1;
        }
        (bytes, chunks)
    }

    /// Pushes a slice at a certain offset
    #[inline]
    pub fn write_at(&mut self, offset: VarInt, data: &[u8]) -> Result<(), ReceiveBufferError> {
        // create a request
        let request = Request::new(offset, data)?;

        // trim off any data that we've already read
        let (_, mut request) = request.split(self.start_offset);

        // if the request is empty we're done
        if request.is_empty() {
            return Ok(());
        }

        // start from the back with the assumption that most data arrives in order
        for mut idx in (0..self.slots.len()).rev() {
            let slot = &mut self.slots[idx];

            let slot::Outcome { lower, mid, upper } = slot.try_write(request);

            // if this slot was completed, we should try and unsplit with the next slot
            if slot.is_full() {
                let current_block =
                    Self::align_offset(slot.start(), Self::allocation_size(slot.start()));
                let end = slot.end();

                if let Some(next) = self.slots.get(idx + 1) {
                    let next_block =
                        Self::align_offset(next.start(), Self::allocation_size(next.start()));

                    if next.start() == end && current_block == next_block {
                        if let Some(next) = self.slots.remove(idx + 1) {
                            self.slots[idx].unsplit(next);
                        } else {
                            debug_assert!(false, "slot should be available");
                            unsafe {
                                // Safety: we've already checked that `idx + 1` exists
                                core::hint::unreachable_unchecked();
                            }
                        }
                    }
                }
            }

            idx += 1;
            self.allocate_request(idx, upper);

            if let Some(mid) = mid {
                self.insert(idx, mid);
            }

            request = lower;

            if request.is_empty() {
                break;
            }
        }

        self.allocate_request(0, request);

        self.check_consistency();

        Ok(())
    }

    /// Iterates over all of the chunks waiting to be received
    #[inline]
    pub fn iter(&self) -> impl Iterator<Item = &[u8]> {
        Iter::new(self)
    }

    /// Pops a buffer from the front of the receive queue if available
    #[inline]
    pub fn pop(&mut self) -> Option<BytesMut> {
        self.pop_transform(|buffer| buffer.split())
    }

    /// Pops a buffer from the front of the receive queue, who's length is always guaranteed to be
    /// less than the provided `watermark`.
    #[inline]
    pub fn pop_watermarked(&mut self, watermark: usize) -> Option<BytesMut> {
        self.pop_transform(|buffer| {
            // make sure the buffer doesn't exceed the watermark
            let watermark = watermark.min(buffer.len());

            // if the watermark is 0 then don't needlessly increment refcounts
            if watermark == 0 {
                return BytesMut::new();
            }

            buffer.split_to(watermark)
        })
    }

    /// Pops a buffer from the front of the receive queue as long as the `transform` function returns a
    /// non-empty buffer.
    #[inline]
    fn pop_transform<F: Fn(&mut BytesMut) -> BytesMut>(
        &mut self,
        transform: F,
    ) -> Option<BytesMut> {
        let slot = self.slots.front_mut()?;

        if !slot.is_occupied(self.start_offset) {
            return None;
        }

        let buffer = slot.data_mut();

        let out = transform(buffer);

        // filter out empty buffers
        if out.is_empty() {
            return None;
        }

        slot.add_start(out.len());

        if slot.start() == slot.end_allocated() {
            // remove empty buffers
            self.slots.pop_front();
        }

        self.start_offset += out.len() as u64;

        Some(out)
    }

    /// Returns the amount of data that had already been consumed from the
    /// receive buffer.
    #[inline]
    pub fn consumed_len(&self) -> u64 {
        self.start_offset
    }

    /// Returns the total amount of contiguous received data.
    ///
    /// This includes the already consumed data as well as the data that is still
    /// buffered and available for consumption.
    #[inline]
    pub fn total_received_len(&self) -> u64 {
        self.consumed_len() + self.len() as u64
    }

    /// Resets the receive buffer.
    ///
    /// This will drop all previously received data.
    #[inline]
    pub fn reset(&mut self) {
        self.slots.clear();
        self.start_offset = Default::default();
    }

    #[inline(always)]
    fn insert(&mut self, idx: usize, slot: Slot) {
        if self.slots.len() < idx {
            debug_assert_eq!(self.slots.len() + 1, idx);
            self.slots.push_back(slot);
        } else {
            self.slots.insert(idx, slot);
        }
    }

    #[inline]
    fn allocate_request(&mut self, mut idx: usize, mut request: Request) {
        while !request.is_empty() {
            let size = Self::allocation_size(request.start());
            let offset = Self::align_offset(request.start(), size);
            let buffer = BytesMut::with_capacity(size);
            let end = offset + size as u64;
            let mut slot = Slot::new(offset, end, buffer);

            let slot::Outcome { lower, mid, upper } = slot.try_write(request);

            debug_assert!(lower.is_empty(), "lower requests should always be empty");

            // first insert the newly-created Slot
            self.insert(idx, slot);
            idx += 1;

            // check if we have a mid-slot and insert that as well
            if let Some(mid) = mid {
                self.insert(idx, mid);
                idx += 1;
            }

            // set the current request to the upper slot and loop
            request = upper;
        }
    }

    /// Aligns an offset to a certain alignment size
    #[inline]
    fn align_offset(offset: u64, alignment: usize) -> u64 {
        (offset / (alignment as u64)) * (alignment as u64)
    }

    /// Returns the desired allocation size for the given offset
    ///
    /// The allocation size gradually increases as the offset increases. This is under
    /// the assumption that streams that receive a lot of data will continue to receive
    /// a lot of data.
    ///
    /// The current table is as follows:
    ///
    /// | offset         | allocation size |
    /// |----------------|-----------------|
    /// | 0              | 4096            |
    /// | 65536          | 16384           |
    /// | 262144         | 32768           |
    /// | >=1048575      | 65536           |
    #[inline]
    fn allocation_size(offset: u64) -> usize {
        for pow in (2..=4).rev() {
            let mult = 1 << pow;
            let square = mult * mult;
            let min_offset = (MIN_BUFFER_ALLOCATION_SIZE * square) as u64;
            let allocation_size = MIN_BUFFER_ALLOCATION_SIZE * mult;

            if offset >= min_offset {
                return allocation_size;
            }
        }

        MIN_BUFFER_ALLOCATION_SIZE
    }

    #[inline]
    fn check_consistency(&self) {
        if cfg!(debug_assertions) {
            let mut prev_end = self.start_offset;

            for slot in &self.slots {
                assert!(slot.start() >= prev_end, "{self:#?}");
                prev_end = slot.end_allocated();
            }
        }
    }
}

pub struct Iter<'a> {
    prev_end: u64,
    inner: vec_deque::Iter<'a, Slot>,
}

impl<'a> Iter<'a> {
    #[inline]
    fn new(buffer: &'a ReceiveBuffer) -> Self {
        Self {
            prev_end: buffer.start_offset,
            inner: buffer.slots.iter(),
        }
    }
}

impl<'a> Iterator for Iter<'a> {
    type Item = &'a [u8];

    #[inline]
    fn next(&mut self) -> Option<Self::Item> {
        let slot = self.inner.next()?;

        if !slot.is_occupied(self.prev_end) {
            return None;
        }

        self.prev_end = slot.end();
        Some(slot.as_slice())
    }
}