1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
macro_rules! CHECK {
($A:expr) => {
if (!($A)) {
continue;
}
};
}
/*
* Copyright 2020 Axel Waggershauser
*/
// SPDX-License-Identifier: Apache-2.0
use std::{cell::RefCell, rc::Rc};
use crate::{
common::{
cpp_essentials::RegressionLineTrait, BitMatrix, DefaultGridSampler, GridSampler,
Quadrilateral, Result,
},
datamatrix::detector::{
zxing_cpp_detector::{util::intersect, BitMatrixCursorTrait},
DatamatrixDetectorResult,
},
point_f,
qrcode::encoder::ByteMatrix,
Exceptions, Point,
};
use super::{DMRegressionLine, EdgeTracer};
/**
* The following code is the 'new' one implemented by Axel Waggershauser and is working completely different.
* It is performing something like a (back) trace search along edges through the bit matrix, first looking for
* the 'L'-pattern, then tracing the black/white borders at the top/right. Advantages over the old code are:
* * works with lower resolution scans (around 2 pixel per module), due to sub-pixel precision grid placement
* * works with real-world codes that have just one module wide quiet-zone (which is perfectly in spec)
*/
fn Scan(
startTracer: &mut EdgeTracer,
lines: &mut [DMRegressionLine; 4],
) -> Result<DatamatrixDetectorResult> {
while startTracer.step(None) {
//log(startTracer.p);
// continue until we cross from black into white
if !startTracer.edgeAtBack().isWhite() {
continue;
}
let mut tl = Point::default();
let mut bl = Point::default();
let mut br = Point::default();
let mut tr = Point::default();
for l in lines.iter_mut() {
l.reset();
}
let [lineL, lineB, lineR, lineT] = lines;
// for l in lines {
// l.reset();
// }
// #ifdef PRINT_DEBUG
// SCOPE_EXIT([&] {
// for (auto& l : lines)
// log(l.points());
// });
// # define CHECK(A) if (!(A)) { printf("broke at %d\n", __LINE__); continue; }
// #else
// # define CHECK(A) if(!(A)) continue
// #endif
let mut t = startTracer.clone();
// follow left leg upwards
t.turnRight();
t.state = 1;
CHECK!(t.traceLine(t.right(), lineL)?);
CHECK!(t.traceCorner(&mut t.right(), &mut tl)?);
lineL.reverse();
let mut tlTracer = t;
// follow left leg downwards
t = startTracer.clone();
t.state = 1;
t.setDirection(tlTracer.right());
CHECK!(t.traceLine(t.left(), lineL)?);
if !lineL.isValid() {
t.updateDirectionFromOrigin(tl);
}
let up = t.back();
CHECK!(t.traceCorner(&mut t.left(), &mut bl)?);
// follow bottom leg right
t.state = 2;
CHECK!(t.traceLine(t.left(), lineB)?);
if !lineB.isValid() {
t.updateDirectionFromOrigin(bl);
}
let right = *t.front();
CHECK!(t.traceCorner(&mut t.left(), &mut br)?);
let lenL = Point::distance(tl, bl) - 1.0;
let lenB = Point::distance(bl, br) - 1.0;
CHECK!(lenL >= 8.0 && lenB >= 10.0 && lenB >= lenL / 4.0 && lenB <= lenL * 18.0);
let mut maxStepSize: i32 = (lenB / 5.0 + 1.0) as i32; // datamatrix bottom dim is at least 10
// at this point we found a plausible L-shape and are now looking for the b/w pattern at the top and right:
// follow top row right 'half way' (4 gaps), see traceGaps break condition with 'invalid' line
tlTracer.setDirection(right);
CHECK!(tlTracer.traceGaps(
tlTracer.right(),
lineT,
maxStepSize,
&mut DMRegressionLine::default()
)?);
// let a = lineT.length() as i32 / 3;
// let b = (lenL / 5.0) as i32;
// maxStepSize = std::cmp::min(a, b) * 2;
maxStepSize = std::cmp::min(lineT.length() as i32 / 3, (lenL / 5.0) as i32) * 2;
// follow up until we reach the top line
t.setDirection(up);
t.state = 3;
CHECK!(t.traceGaps(t.left(), lineR, maxStepSize, lineT)?);
CHECK!(t.traceCorner(&mut t.left(), &mut tr)?);
let lenT = Point::distance(tl, tr) - 1.0;
let lenR = Point::distance(tr, br) - 1.0;
CHECK!(
(lenT - lenB).abs() / lenB < 0.5
&& (lenR - lenL).abs() / lenL < 0.5
&& lineT.points().len() >= 5
&& lineR.points().len() >= 5
);
// continue top row right until we cross the right line
CHECK!(tlTracer.traceGaps(tlTracer.right(), lineT, maxStepSize, lineR)?);
// #ifdef PRINT_DEBUG
// printf("L: %.1f, %.1f ^ %.1f, %.1f > %.1f, %.1f (%d : %d : %d : %d)\n", bl.x, bl.y,
// tl.x - bl.x, tl.y - bl.y, br.x - bl.x, br.y - bl.y, (int)lenL, (int)lenB, (int)lenT, (int)lenR);
// #endif
// for l in [lineL, lineB, lineT, lineR] {
// l.evaluate_max_distance(Some(1.0), None);
// }
lineL.evaluate_max_distance(Some(1.0), None);
lineB.evaluate_max_distance(Some(1.0), None);
lineT.evaluate_max_distance(Some(1.0), None);
lineR.evaluate_max_distance(Some(1.0), None);
// find the bounding box corners of the code with sub-pixel precision by intersecting the 4 border lines
bl = intersect(lineB, lineL)?;
tl = intersect(lineT, lineL)?;
tr = intersect(lineT, lineR)?;
br = intersect(lineB, lineR)?;
let mut dimT: i32 = 0;
let mut dimR: i32 = 0;
let mut fracT: f64 = 0.0;
let mut fracR: f64 = 0.0;
let splitDouble = |d: f64, i: &mut i32, f: &mut f64| {
*i = if d.is_normal() { (d + 0.5) as i32 } else { 0 };
*f = if d.is_normal() {
(d - *i as f64).abs()
} else {
f64::INFINITY
};
};
splitDouble(lineT.modules(tl, tr)?, &mut dimT, &mut fracT);
splitDouble(lineR.modules(br, tr)?, &mut dimR, &mut fracR);
// #ifdef PRINT_DEBUG
// printf("L: %.1f, %.1f ^ %.1f, %.1f > %.1f, %.1f ^> %.1f, %.1f\n", bl.x, bl.y,
// tl.x - bl.x, tl.y - bl.y, br.x - bl.x, br.y - bl.y, tr.x, tr.y);
// printf("dim: %d x %d\n", dimT, dimR);
// #endif
// if we have an almost square (invalid rectangular) data matrix dimension, we try to parse it by assuming a
// square. we use the dimension that is closer to an integral value. all valid rectangular symbols differ in
// their dimension by at least 10 (here 5, see doubling below). Note: this is currently not required for the
// black-box tests to complete.
if (dimT - dimR).abs() < 5 {
dimR = if fracR < fracT { dimR } else { dimT };
dimT = dimR;
}
// the dimension is 2x the number of black/white transitions
dimT *= 2;
dimR *= 2;
CHECK!((10..=144).contains(&dimT) && (8..=144).contains(&dimR));
let movedTowardsBy = |a: Point, b1: Point, b2: Point, d: f32| -> Point {
a + d * Point::normalized(Point::normalized(b1 - a) + Point::normalized(b2 - a))
};
// shrink shape by half a pixel to go from center of white pixel outside of code to the edge between white and black
let sourcePoints = Quadrilateral::with_points(
movedTowardsBy(tl, tr, bl, 0.5),
// move the tr point a little less because the jagged top and right line tend to be statistically slightly
// inclined toward the center anyway.
movedTowardsBy(tr, br, tl, 0.3),
movedTowardsBy(br, bl, tr, 0.5),
movedTowardsBy(bl, tl, br, 0.5),
);
let grid_sampler = DefaultGridSampler::default();
// let transform = PerspectiveTransform::quadrilateralToQuadrilateral(x0, y0, x1, y1, x2, y2, x3, y3, x0p, y0p, x1p, y1p, x2p, y2p, x3p, y3p);
let dst = Quadrilateral::new(
point_f(0.0, 0.0),
point_f(dimT as f32, 0.0),
point_f(dimT as f32, dimR as f32),
point_f(0.0, dimR as f32),
);
let src = sourcePoints;
let res =
grid_sampler.sample_grid_detailed(startTracer.img, dimT as u32, dimR as u32, dst, src);
// let res = grid_sampler.sample_grid(startTracer.img, dimT as u32, dimR as u32, &transform);
// let res = SampleGrid(*startTracer.img, dimT, dimR, PerspectiveTransform(Rectangle(dimT, dimR, 0), sourcePoints));
CHECK!(res.is_ok());
let (res, _) = res?;
return Ok(DatamatrixDetectorResult::new(
res,
sourcePoints.points().to_vec(),
));
}
Err(Exceptions::NOT_FOUND)
}
pub fn detect(
image: &BitMatrix,
tryHarder: bool,
tryRotate: bool,
) -> Result<DatamatrixDetectorResult> {
// #ifdef PRINT_DEBUG
// LogMatrixWriter lmw(log, image, 1, "dm-log.pnm");
// // tryRotate = tryHarder = false;
// #endif
// disable expensive multi-line scan to detect off-center symbols for now
// #ifndef __cpp_impl_coroutine
// tryHarder = false;
// #endif
// a history log to remember where the tracing already passed by to prevent a later trace from doing the same work twice
let mut history = None;
if tryHarder {
history = Some(Rc::new(RefCell::new(ByteMatrix::new(
image.getWidth(),
image.getHeight(),
))));
}
// instantiate RegressionLine objects outside of Scan function to prevent repetitive std::vector allocations
let mut lines = [
DMRegressionLine::default(),
DMRegressionLine::default(),
DMRegressionLine::default(),
DMRegressionLine::default(),
]; // [DMRegressionLine::default();4];
const MIN_SYMBOL_SIZE: u32 = 8 * 2; // minimum realistic size in pixel: 8 modules x 2 pixels per module
for dir in [
Point { x: -1.0, y: 0.0 },
Point { x: 1.0, y: 0.0 },
Point { x: 0.0, y: -1.0 },
Point { x: 0.0, y: 1.0 },
] {
// for (auto dir : {PointF(-1, 0), PointF(1, 0), PointF(0, -1), PointF(0, 1)}) {
let center = Point {
x: (image.getWidth() / 2) as f32,
y: (image.getHeight() / 2) as f32,
}; //PointF(image.width() / 2, image.height() / 2);
let startPos = Point::centered(center - center * dir + MIN_SYMBOL_SIZE as i32 / 2 * dir);
if let Some(history) = &mut history {
history.borrow_mut().clear(0);
// history.clear(0);
}
let mut i = 1;
loop {
// for (int i = 1;; ++i) {
// EdgeTracer tracer(image, startPos, dir);
let mut tracer = EdgeTracer::new(image, startPos, dir);
tracer.p += i / 2
* MIN_SYMBOL_SIZE as i32
* (if (i & 1) != 0 { -1 } else { 1 })
* tracer.right();
if tryHarder {
// tracer.history = history.as_mut();
tracer.history = history.clone();
// if let Some(history) = &history {
// tracer.history = history;
// }
// tracer.history = &history;
}
if !tracer.isInSelf() {
break;
}
// #ifdef __cpp_impl_coroutine
// DetectorResult res;
// while (res = Scan(tracer, lines), res.isValid())
// co_yield std::move(res);
// #else
if let Ok(res) = Scan(&mut tracer, &mut lines) {
// if res.isValid(){
return Ok(res);
// }
}
// if (auto res = Scan(tracer, lines); res.isValid())
// {return res;}
// #endif
if !tryHarder {
break;
} // only test center lines
i += 1;
}
if !tryRotate {
break;
} // only test left direction
}
// #ifndef __cpp_impl_coroutine
Err(Exceptions::NOT_FOUND)
// #endif
}