1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
/*
* Copyright 2021 ZXing authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
use std::{fmt, rc::Rc};
use encoding::{self, EncodingRef};
use crate::{
common::{ECIInput, MinimalECIInput},
Exceptions,
};
use super::{high_level_encoder, SymbolShapeHint};
const ISO_8859_1_ENCODER: EncodingRef = encoding::all::ISO_8859_1;
/**
* Encoder that encodes minimally
*
* Algorithm:
*
* Uses Dijkstra to produce mathematically minimal encodings that are in some cases smaller than the results produced
* by the algorithm described in annex S in the specification ISO/IEC 16022:200(E). The biggest improvment of this
* algorithm over that one is the case when the algorithm enters the most inefficient mode, the B256 Mode:: The
* algorithm from the specification algorithm will exit this mode only if it encounters digits so that arbitrarily
* inefficient results can be produced if the postfix contains no digits.
*
* Multi ECI support and ECI switching:
*
* For multi language content the algorithm selects the most compact representation using ECI modes. Note that unlike
* the compaction algorithm used for QR-Codes, this implementation operates in two stages and therfore is not
* mathematically optimal. In the first stage, the input string is encoded minimally as a stream of ECI character set
* selectors and bytes encoded in the selected encoding. In this stage the algorithm might for example decide to
* encode ocurrences of the characters "\u0150\u015C" (O-double-acute, S-circumflex) in UTF-8 by a single ECI or
* alternatively by multiple ECIs that switch between IS0-8859-2 and ISO-8859-3 (e.g. in the case that the input
* contains many * characters from ISO-8859-2 (Latin 2) and few from ISO-8859-3 (Latin 3)).
* In a second stage this stream of ECIs and bytes is minimally encoded using the various Data Matrix encoding modes.
* While both stages encode mathematically minimally it is not ensured that the result is mathematically minimal since
* the size growth for inserting an ECI in the first stage can only be approximated as the first stage does not know
* in which mode the ECI will occur in the second stage (may, or may not require an extra latch to ASCII depending on
* the current mode). The reason for this shortcoming are difficulties in implementing it in a straightforward and
* readable manner.
*
* GS1 support
*
* FNC1 delimiters can be encoded in the input string by using the FNC1 character specified in the encoding function.
* When a FNC1 character is specified then a leading FNC1 will be encoded and all ocurrences of delimiter characters
* while result in FNC1 codewords in the symbol.
*
* @author Alex Geller
*/
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
enum Mode {
ASCII,
C40,
TEXT,
X12,
EDF,
B256,
}
impl Mode {
pub fn ordinal(&self) -> usize {
match self {
Mode::ASCII => 0,
Mode::C40 => 1,
Mode::TEXT => 2,
Mode::X12 => 3,
Mode::EDF => 4,
Mode::B256 => 5,
}
}
}
const C40_SHIFT2_CHARS: [char; 27] = [
'!', '"', '#', '$', '%', '&', '\'', '(', ')', '*', '+', ',', '-', '.', '/', ':', ';', '<', '=',
'>', '?', '@', '[', '\\', ']', '^', '_',
];
pub fn isExtendedASCII(ch: char, fnc1: Option<char>) -> bool {
let is_fnc1 = if let Some(fnc1) = fnc1 {
ch != fnc1
} else {
true
};
is_fnc1 && ch as u8 >= 128 //&& ch as u8 <= 255
// return ch != fnc1 && ch as u8 >= 128 && ch as u8 <= 255;
}
fn isInC40Shift1Set(ch: char) -> bool {
ch as u8 <= 31
}
fn isInC40Shift2Set(ch: char, fnc1: Option<char>) -> bool {
for c40Shift2Char in C40_SHIFT2_CHARS {
// for (char c40Shift2Char : C40_SHIFT2_CHARS) {
if c40Shift2Char == ch {
return true;
}
}
if let Some(fnc1) = fnc1 {
ch == fnc1
} else {
false
}
// return ch as u8 as i32 == fnc1;
}
fn isInTextShift1Set(ch: char) -> bool {
isInC40Shift1Set(ch)
}
fn isInTextShift2Set(ch: char, fnc1: Option<char>) -> bool {
isInC40Shift2Set(ch, fnc1)
}
/**
* Performs message encoding of a DataMatrix message
*
* @param msg the message
* @return the encoded message (the char values range from 0 to 255)
*/
pub fn encodeHighLevel(msg: &str) -> Result<String, Exceptions> {
encodeHighLevelWithDetails(msg, None, None, SymbolShapeHint::FORCE_NONE)
}
/**
* Performs message encoding of a DataMatrix message
*
* @param msg the message
* @param priorityCharset The preferred {@link Charset}. When the value of the argument is null, the algorithm
* chooses charsets that leads to a minimal representation. Otherwise the algorithm will use the priority
* charset to encode any character in the input that can be encoded by it if the charset is among the
* supported charsets.
* @param fnc1 denotes the character in the input that represents the FNC1 character or -1 if this is not a GS1
* bar code. If the value is not -1 then a FNC1 is also prepended.
* @param shape requested shape.
* @return the encoded message (the char values range from 0 to 255)
*/
pub fn encodeHighLevelWithDetails(
msg: &str,
priorityCharset: Option<EncodingRef>,
fnc1: Option<char>,
shape: SymbolShapeHint,
) -> Result<String, Exceptions> {
let mut msg = msg;
let mut macroId = 0;
if msg.starts_with(high_level_encoder::MACRO_05_HEADER)
&& msg.ends_with(high_level_encoder::MACRO_TRAILER)
{
macroId = 5;
// msg = msg.substring(high_level_encoder::MACRO_05_HEADER.len(), msg.len() - 2);
msg = &msg[high_level_encoder::MACRO_05_HEADER.chars().count()..(msg.chars().count() - 2)];
} else if msg.starts_with(high_level_encoder::MACRO_06_HEADER)
&& msg.ends_with(high_level_encoder::MACRO_TRAILER)
{
macroId = 6;
// msg = msg.substring(high_level_encoder::MACRO_06_HEADER.len(), msg.len() - 2);
msg = &msg[high_level_encoder::MACRO_06_HEADER.chars().count()..(msg.chars().count() - 2)];
}
Ok(ISO_8859_1_ENCODER
.decode(
&encode(msg, priorityCharset, fnc1, shape, macroId)?,
encoding::DecoderTrap::Strict,
)
.expect("should decode")
.to_owned())
// return new String(encode(msg, priorityCharset, fnc1, shape, macroId), StandardCharsets.ISO_8859_1);
}
/**
* Encodes input minimally and returns an array of the codewords
*
* @param input The string to encode
* @param priorityCharset The preferred {@link Charset}. When the value of the argument is null, the algorithm
* chooses charsets that leads to a minimal representation. Otherwise the algorithm will use the priority
* charset to encode any character in the input that can be encoded by it if the charset is among the
* supported charsets.
* @param fnc1 denotes the character in the input that represents the FNC1 character or -1 if this is not a GS1
* bar code. If the value is not -1 then a FNC1 is also prepended.
* @param shape requested shape.
* @param macroId Prepends the specified macro function in case that a value of 5 or 6 is specified.
* @return An array of bytes representing the codewords of a minimal encoding.
*/
fn encode(
input: &str,
priorityCharset: Option<EncodingRef>,
fnc1: Option<char>,
shape: SymbolShapeHint,
macroId: i32,
) -> Result<Vec<u8>, Exceptions> {
Ok(encodeMinimally(Rc::new(Input::new(
input,
priorityCharset,
fnc1,
shape,
macroId,
)))?
.getBytes()
.to_vec())
}
fn addEdge(edges: &mut Vec<Vec<Option<Rc<Edge>>>>, edge: Rc<Edge>) -> Result<(), Exceptions> {
let vertexIndex = (edge.fromPosition + edge.characterLength) as usize;
if edges[vertexIndex][edge.getEndMode()?.ordinal()].is_none()
|| edges[vertexIndex][edge.getEndMode()?.ordinal()]
.as_ref()
.unwrap()
.cachedTotalSize
> edge.cachedTotalSize
{
edges[vertexIndex][edge.getEndMode()?.ordinal()] = Some(edge.clone());
}
Ok(())
}
/** @return the number of words in which the string starting at from can be encoded in c40 or text Mode::
* The number of characters encoded is returned in characterLength.
* The number of characters encoded is also minimal in the sense that the algorithm stops as soon
* as a character encoding fills a C40 word competely (three C40 values). An exception is at the
* end of the string where two C40 values are allowed (according to the spec the third c40 value
* is filled with 0 (Shift 1) in this case).
*/
fn getNumberOfC40Words(
input: Rc<Input>,
from: u32,
c40: bool,
characterLength: &mut [u32],
) -> Result<u32, Exceptions> {
let mut thirdsCount = 0;
for i in (from as usize)..input.length() {
// for (int i = from; i < input.length(); i++) {
if input.isECI(i as u32)? {
characterLength[0] = 0;
return Ok(0);
}
let ci = input.charAt(i)?;
if c40 && high_level_encoder::isNativeC40(ci)
|| !c40 && high_level_encoder::isNativeText(ci)
{
thirdsCount += 1; //native
} else if !isExtendedASCII(ci, input.getFNC1Character()) {
thirdsCount += 2; //shift
} else {
let asciiValue = ci as u8 & 0xff;
if asciiValue >= 128
&& (c40 && high_level_encoder::isNativeC40((asciiValue - 128) as char)
|| !c40 && high_level_encoder::isNativeText((asciiValue - 128) as char))
{
thirdsCount += 3; // shift, Upper shift
} else {
thirdsCount += 4; // shift, Upper shift, shift
}
}
if thirdsCount % 3 == 0 || ((thirdsCount - 2) % 3 == 0 && i + 1 == input.length()) {
characterLength[0] = i as u32 - from + 1;
// return (int) Math.ceil(((double) thirdsCount) / 3.0);
return Ok(((thirdsCount as f64) / 3.0).ceil() as u32);
}
}
characterLength[0] = 0;
Ok(0)
}
fn addEdges(
input: Rc<Input>,
edges: &mut Vec<Vec<Option<Rc<Edge>>>>,
from: u32,
previous: Option<Rc<Edge>>,
) -> Result<(), Exceptions> {
if input.isECI(from)? {
addEdge(
edges,
Rc::new(Edge::new(input, Mode::ASCII, from, 1, previous.clone())?),
)?;
return Ok(());
}
let ch = input.charAt(from as usize)?;
if previous.is_none() || previous.as_ref().unwrap().getEndMode()? != Mode::EDF {
//not possible to unlatch a full EDF edge to something
//else
if high_level_encoder::isDigit(ch)
&& input.haveNCharacters(from as usize, 2)
&& high_level_encoder::isDigit(input.charAt(from as usize + 1)?)
{
// two digits ASCII encoded
addEdge(
edges,
Rc::new(Edge::new(
input.clone(),
Mode::ASCII,
from,
2,
previous.clone(),
)?),
)?;
} else {
// one ASCII encoded character or an extended character via Upper Shift
addEdge(
edges,
Rc::new(Edge::new(
input.clone(),
Mode::ASCII,
from,
1,
previous.clone(),
)?),
)?;
}
let modes = [Mode::C40, Mode::TEXT];
for mode in modes {
// for (Mode mode : modes) {
let mut characterLength = [0u32; 1];
if getNumberOfC40Words(input.clone(), from, mode == Mode::C40, &mut characterLength)?
> 0
{
addEdge(
edges,
Rc::new(Edge::new(
input.clone(),
mode,
from,
characterLength[0],
previous.clone(),
)?),
)?;
}
}
if input.haveNCharacters(from as usize, 3)
&& high_level_encoder::isNativeX12(input.charAt(from as usize)?)
&& high_level_encoder::isNativeX12(input.charAt(from as usize + 1)?)
&& high_level_encoder::isNativeX12(input.charAt(from as usize + 2)?)
{
addEdge(
edges,
Rc::new(Edge::new(
input.clone(),
Mode::X12,
from,
3,
previous.clone(),
)?),
)?;
}
addEdge(
edges,
Rc::new(Edge::new(
input.clone(),
Mode::B256,
from,
1,
previous.clone(),
)?),
)?;
}
//We create 4 EDF edges, with 1, 2 3 or 4 characters length. The fourth normally doesn't have a latch to ASCII
//unless it is 2 characters away from the end of the input.
let mut i = 0u32;
while i < 3 {
// for (i = 0; i < 3; i++) {
let pos = from + i;
if input.haveNCharacters(pos as usize, 1)
&& high_level_encoder::isNativeEDIFACT(input.charAt(pos as usize)?)
{
addEdge(
edges,
Rc::new(Edge::new(
input.clone(),
Mode::EDF,
from,
i + 1,
previous.clone(),
)?),
)?;
} else {
break;
}
i += 1;
}
if i == 3
&& input.haveNCharacters(from as usize, 4)
&& high_level_encoder::isNativeEDIFACT(input.charAt(from as usize + 3)?)
{
addEdge(
edges,
Rc::new(Edge::new(input, Mode::EDF, from, 4, previous.clone())?),
)?;
}
Ok(())
}
fn encodeMinimally(input: Rc<Input>) -> Result<RXingResult, Exceptions> {
// @SuppressWarnings("checkstyle:lineLength")
/* The minimal encoding is computed by Dijkstra. The acyclic graph is modeled as follows:
* A vertex represents a combination of a position in the input and an encoding mode where position 0
* denotes the position left of the first character, 1 the position left of the second character and so on.
* Likewise the end vertices are located after the last character at position input.length().
* For any position there might be up to six vertices, one for each of the encoding types ASCII, C40, TEXT, X12,
* EDF and B256.
*
* As an example consider the input string "ABC123" then at position 0 there is only one vertex with the default
* ASCII encodation. At position 3 there might be vertices for the types ASCII, C40, X12, EDF and B256.
*
* An edge leading to such a vertex encodes one or more of the characters left of the position that the vertex
* represents. It encodes the characters in the encoding mode of the vertex that it ends on. In other words,
* all edges leading to a particular vertex encode the same characters (the length of the suffix can vary) using the same
* encoding Mode::
* As an example consider the input string "ABC123" and the vertex (4,EDF). Possible edges leading to this vertex
* are:
* (0,ASCII) --EDF(ABC1)--> (4,EDF)
* (1,ASCII) --EDF(BC1)--> (4,EDF)
* (1,B256) --EDF(BC1)--> (4,EDF)
* (1,EDF) --EDF(BC1)--> (4,EDF)
* (2,ASCII) --EDF(C1)--> (4,EDF)
* (2,B256) --EDF(C1)--> (4,EDF)
* (2,EDF) --EDF(C1)--> (4,EDF)
* (3,ASCII) --EDF(1)--> (4,EDF)
* (3,B256) --EDF(1)--> (4,EDF)
* (3,EDF) --EDF(1)--> (4,EDF)
* (3,C40) --EDF(1)--> (4,EDF)
* (3,X12) --EDF(1)--> (4,EDF)
*
* The edges leading to a vertex are stored in such a way that there is a fast way to enumerate the edges ending
* on a particular vertex.
*
* The algorithm processes the vertices in order of their position thereby performing the following:
*
* For every vertex at position i the algorithm enumerates the edges ending on the vertex and removes all but the
* shortest from that list.
* Then it processes the vertices for the position i+1. If i+1 == input.length() then the algorithm ends
* and chooses the the edge with the smallest size from any of the edges leading to vertices at this position.
* Otherwise the algorithm computes all possible outgoing edges for the vertices at the position i+1
*
* Examples:
* The process is illustrated by showing the graph (edges) after each iteration from left to right over the input:
* An edge is drawn as follows "(" + fromVertex + ") -- " + encodingMode + "(" + encodedInput + ") (" +
* accumulatedSize + ") --> (" + toVertex + ")"
*
* Example 1 encoding the string "ABCDEFG":
*
*
* Situation after adding edges to the start vertex (0,ASCII)
* (0,ASCII) ASCII(A) (1) --> (1,ASCII)
* (0,ASCII) B256(A) (3) --> (1,B256)
* (0,ASCII) EDF(AB) (4) --> (2,EDF)
* (0,ASCII) C40(ABC) (3) --> (3,C40)
* (0,ASCII) TEXT(ABC) (5) --> (3,TEXT)
* (0,ASCII) X12(ABC) (3) --> (3,X12)
* (0,ASCII) EDF(ABC) (4) --> (3,EDF)
* (0,ASCII) EDF(ABCD) (4) --> (4,EDF)
*
* Situation after adding edges to vertices at position 1
* (0,ASCII) ASCII(A) (1) --> (1,ASCII)
* (0,ASCII) B256(A) (3) --> (1,B256)
* (0,ASCII) EDF(AB) (4) --> (2,EDF)
* (0,ASCII) C40(ABC) (3) --> (3,C40)
* (0,ASCII) TEXT(ABC) (5) --> (3,TEXT)
* (0,ASCII) X12(ABC) (3) --> (3,X12)
* (0,ASCII) EDF(ABC) (4) --> (3,EDF)
* (0,ASCII) EDF(ABCD) (4) --> (4,EDF)
* (0,ASCII) ASCII(A) (1) --> (1,ASCII) ASCII(B) (2) --> (2,ASCII)
* (0,ASCII) ASCII(A) (1) --> (1,ASCII) B256(B) (4) --> (2,B256)
* (0,ASCII) ASCII(A) (1) --> (1,ASCII) EDF(BC) (5) --> (3,EDF)
* (0,ASCII) ASCII(A) (1) --> (1,ASCII) C40(BCD) (4) --> (4,C40)
* (0,ASCII) ASCII(A) (1) --> (1,ASCII) TEXT(BCD) (6) --> (4,TEXT)
* (0,ASCII) ASCII(A) (1) --> (1,ASCII) X12(BCD) (4) --> (4,X12)
* (0,ASCII) ASCII(A) (1) --> (1,ASCII) EDF(BCD) (5) --> (4,EDF)
* (0,ASCII) ASCII(A) (1) --> (1,ASCII) EDF(BCDE) (5) --> (5,EDF)
* (0,ASCII) B256(A) (3) --> (1,B256) ASCII(B) (4) --> (2,ASCII)
* (0,ASCII) B256(A) (3) --> (1,B256) B256(B) (3) --> (2,B256)
* (0,ASCII) B256(A) (3) --> (1,B256) EDF(BC) (6) --> (3,EDF)
* (0,ASCII) B256(A) (3) --> (1,B256) C40(BCD) (5) --> (4,C40)
* (0,ASCII) B256(A) (3) --> (1,B256) TEXT(BCD) (7) --> (4,TEXT)
* (0,ASCII) B256(A) (3) --> (1,B256) X12(BCD) (5) --> (4,X12)
* (0,ASCII) B256(A) (3) --> (1,B256) EDF(BCD) (6) --> (4,EDF)
* (0,ASCII) B256(A) (3) --> (1,B256) EDF(BCDE) (6) --> (5,EDF)
*
* Edge "(1,ASCII) ASCII(B) (2) --> (2,ASCII)" is minimal for the vertex (2,ASCII) so that edge "(1,B256) ASCII(B) (4) --> (2,ASCII)" is removed.
* Edge "(1,B256) B256(B) (3) --> (2,B256)" is minimal for the vertext (2,B256) so that the edge "(1,ASCII) B256(B) (4) --> (2,B256)" is removed.
*
* Situation after adding edges to vertices at position 2
* (0,ASCII) ASCII(A) (1) --> (1,ASCII)
* (0,ASCII) B256(A) (3) --> (1,B256)
* (0,ASCII) EDF(AB) (4) --> (2,EDF)
* (0,ASCII) C40(ABC) (3) --> (3,C40)
* (0,ASCII) TEXT(ABC) (5) --> (3,TEXT)
* (0,ASCII) X12(ABC) (3) --> (3,X12)
* (0,ASCII) EDF(ABC) (4) --> (3,EDF)
* (0,ASCII) EDF(ABCD) (4) --> (4,EDF)
* (0,ASCII) ASCII(A) (1) --> (1,ASCII) ASCII(B) (2) --> (2,ASCII)
* (0,ASCII) ASCII(A) (1) --> (1,ASCII) EDF(BC) (5) --> (3,EDF)
* (0,ASCII) ASCII(A) (1) --> (1,ASCII) C40(BCD) (4) --> (4,C40)
* (0,ASCII) ASCII(A) (1) --> (1,ASCII) TEXT(BCD) (6) --> (4,TEXT)
* (0,ASCII) ASCII(A) (1) --> (1,ASCII) X12(BCD) (4) --> (4,X12)
* (0,ASCII) ASCII(A) (1) --> (1,ASCII) EDF(BCD) (5) --> (4,EDF)
* (0,ASCII) ASCII(A) (1) --> (1,ASCII) EDF(BCDE) (5) --> (5,EDF)
* (0,ASCII) B256(A) (3) --> (1,B256) B256(B) (3) --> (2,B256)
* (0,ASCII) B256(A) (3) --> (1,B256) EDF(BC) (6) --> (3,EDF)
* (0,ASCII) B256(A) (3) --> (1,B256) C40(BCD) (5) --> (4,C40)
* (0,ASCII) B256(A) (3) --> (1,B256) TEXT(BCD) (7) --> (4,TEXT)
* (0,ASCII) B256(A) (3) --> (1,B256) X12(BCD) (5) --> (4,X12)
* (0,ASCII) B256(A) (3) --> (1,B256) EDF(BCD) (6) --> (4,EDF)
* (0,ASCII) B256(A) (3) --> (1,B256) EDF(BCDE) (6) --> (5,EDF)
* (0,ASCII) EDF(AB) (4) --> (2,EDF) ASCII(C) (5) --> (3,ASCII)
* (0,ASCII) EDF(AB) (4) --> (2,EDF) B256(C) (6) --> (3,B256)
* (0,ASCII) EDF(AB) (4) --> (2,EDF) EDF(CD) (7) --> (4,EDF)
* (0,ASCII) EDF(AB) (4) --> (2,EDF) C40(CDE) (6) --> (5,C40)
* (0,ASCII) EDF(AB) (4) --> (2,EDF) TEXT(CDE) (8) --> (5,TEXT)
* (0,ASCII) EDF(AB) (4) --> (2,EDF) X12(CDE) (6) --> (5,X12)
* (0,ASCII) EDF(AB) (4) --> (2,EDF) EDF(CDE) (7) --> (5,EDF)
* (0,ASCII) EDF(AB) (4) --> (2,EDF) EDF(CDEF) (7) --> (6,EDF)
* (0,ASCII) ASCII(A) (1) --> (1,ASCII) ASCII(B) (2) --> (2,ASCII) ASCII(C) (3) --> (3,ASCII)
* (0,ASCII) ASCII(A) (1) --> (1,ASCII) ASCII(B) (2) --> (2,ASCII) B256(C) (5) --> (3,B256)
* (0,ASCII) ASCII(A) (1) --> (1,ASCII) ASCII(B) (2) --> (2,ASCII) EDF(CD) (6) --> (4,EDF)
* (0,ASCII) ASCII(A) (1) --> (1,ASCII) ASCII(B) (2) --> (2,ASCII) C40(CDE) (5) --> (5,C40)
* (0,ASCII) ASCII(A) (1) --> (1,ASCII) ASCII(B) (2) --> (2,ASCII) TEXT(CDE) (7) --> (5,TEXT)
* (0,ASCII) ASCII(A) (1) --> (1,ASCII) ASCII(B) (2) --> (2,ASCII) X12(CDE) (5) --> (5,X12)
* (0,ASCII) ASCII(A) (1) --> (1,ASCII) ASCII(B) (2) --> (2,ASCII) EDF(CDE) (6) --> (5,EDF)
* (0,ASCII) ASCII(A) (1) --> (1,ASCII) ASCII(B) (2) --> (2,ASCII) EDF(CDEF) (6) --> (6,EDF)
* (0,ASCII) B256(A) (3) --> (1,B256) B256(B) (3) --> (2,B256) ASCII(C) (4) --> (3,ASCII)
* (0,ASCII) B256(A) (3) --> (1,B256) B256(B) (3) --> (2,B256) B256(C) (4) --> (3,B256)
* (0,ASCII) B256(A) (3) --> (1,B256) B256(B) (3) --> (2,B256) EDF(CD) (6) --> (4,EDF)
* (0,ASCII) B256(A) (3) --> (1,B256) B256(B) (3) --> (2,B256) C40(CDE) (5) --> (5,C40)
* (0,ASCII) B256(A) (3) --> (1,B256) B256(B) (3) --> (2,B256) TEXT(CDE) (7) --> (5,TEXT)
* (0,ASCII) B256(A) (3) --> (1,B256) B256(B) (3) --> (2,B256) X12(CDE) (5) --> (5,X12)
* (0,ASCII) B256(A) (3) --> (1,B256) B256(B) (3) --> (2,B256) EDF(CDE) (6) --> (5,EDF)
* (0,ASCII) B256(A) (3) --> (1,B256) B256(B) (3) --> (2,B256) EDF(CDEF) (6) --> (6,EDF)
*
* Edge "(2,ASCII) ASCII(C) (3) --> (3,ASCII)" is minimal for the vertex (3,ASCII) so that edges "(2,EDF) ASCII(C) (5) --> (3,ASCII)"
* and "(2,B256) ASCII(C) (4) --> (3,ASCII)" can be removed.
* Edge "(0,ASCII) EDF(ABC) (4) --> (3,EDF)" is minimal for the vertex (3,EDF) so that edges "(1,ASCII) EDF(BC) (5) --> (3,EDF)"
* and "(1,B256) EDF(BC) (6) --> (3,EDF)" can be removed.
* Edge "(2,B256) B256(C) (4) --> (3,B256)" is minimal for the vertex (3,B256) so that edges "(2,ASCII) B256(C) (5) --> (3,B256)"
* and "(2,EDF) B256(C) (6) --> (3,B256)" can be removed.
*
* This continues for vertices 3 thru 7
*
* Situation after adding edges to vertices at position 7
* (0,ASCII) ASCII(A) (1) --> (1,ASCII)
* (0,ASCII) B256(A) (3) --> (1,B256)
* (0,ASCII) EDF(AB) (4) --> (2,EDF)
* (0,ASCII) C40(ABC) (3) --> (3,C40)
* (0,ASCII) TEXT(ABC) (5) --> (3,TEXT)
* (0,ASCII) X12(ABC) (3) --> (3,X12)
* (0,ASCII) EDF(ABC) (4) --> (3,EDF)
* (0,ASCII) EDF(ABCD) (4) --> (4,EDF)
* (0,ASCII) ASCII(A) (1) --> (1,ASCII) ASCII(B) (2) --> (2,ASCII)
* (0,ASCII) ASCII(A) (1) --> (1,ASCII) C40(BCD) (4) --> (4,C40)
* (0,ASCII) ASCII(A) (1) --> (1,ASCII) TEXT(BCD) (6) --> (4,TEXT)
* (0,ASCII) ASCII(A) (1) --> (1,ASCII) X12(BCD) (4) --> (4,X12)
* (0,ASCII) ASCII(A) (1) --> (1,ASCII) EDF(BCDE) (5) --> (5,EDF)
* (0,ASCII) B256(A) (3) --> (1,B256) B256(B) (3) --> (2,B256)
* (0,ASCII) C40(ABC) (3) --> (3,C40) C40(DEF) (5) --> (6,C40)
* (0,ASCII) X12(ABC) (3) --> (3,X12) X12(DEF) (5) --> (6,X12)
* (0,ASCII) ASCII(A) (1) --> (1,ASCII) ASCII(B) (2) --> (2,ASCII) ASCII(C) (3) --> (3,ASCII)
* (0,ASCII) ASCII(A) (1) --> (1,ASCII) ASCII(B) (2) --> (2,ASCII) C40(CDE) (5) --> (5,C40)
* (0,ASCII) ASCII(A) (1) --> (1,ASCII) ASCII(B) (2) --> (2,ASCII) TEXT(CDE) (7) --> (5,TEXT)
* (0,ASCII) ASCII(A) (1) --> (1,ASCII) ASCII(B) (2) --> (2,ASCII) X12(CDE) (5) --> (5,X12)
* (0,ASCII) ASCII(A) (1) --> (1,ASCII) ASCII(B) (2) --> (2,ASCII) EDF(CDEF) (6) --> (6,EDF)
* (0,ASCII) ASCII(A) (1) --> (1,ASCII) C40(BCD) (4) --> (4,C40) C40(EFG) (6) --> (7,C40) //Solution 1
* (0,ASCII) ASCII(A) (1) --> (1,ASCII) X12(BCD) (4) --> (4,X12) X12(EFG) (6) --> (7,X12) //Solution 2
* (0,ASCII) B256(A) (3) --> (1,B256) B256(B) (3) --> (2,B256) B256(C) (4) --> (3,B256)
* (0,ASCII) ASCII(A) (1) --> (1,ASCII) ASCII(B) (2) --> (2,ASCII) ASCII(C) (3) --> (3,ASCII) ASCII(D) (4) --> (4,ASCII)
* (0,ASCII) ASCII(A) (1) --> (1,ASCII) ASCII(B) (2) --> (2,ASCII) ASCII(C) (3) --> (3,ASCII) TEXT(DEF) (8) --> (6,TEXT)
* (0,ASCII) ASCII(A) (1) --> (1,ASCII) ASCII(B) (2) --> (2,ASCII) ASCII(C) (3) --> (3,ASCII) EDF(DEFG) (7) --> (7,EDF)
* (0,ASCII) B256(A) (3) --> (1,B256) B256(B) (3) --> (2,B256) B256(C) (4) --> (3,B256) B256(D) (5) --> (4,B256)
* (0,ASCII) ASCII(A) (1) --> (1,ASCII) ASCII(B) (2) --> (2,ASCII) ASCII(C) (3) --> (3,ASCII) ASCII(D) (4) --> (4,ASCII) ASCII(E) (5) --> (5,ASCII)
* (0,ASCII) ASCII(A) (1) --> (1,ASCII) ASCII(B) (2) --> (2,ASCII) ASCII(C) (3) --> (3,ASCII) ASCII(D) (4) --> (4,ASCII) TEXT(EFG) (9) --> (7,TEXT)
* (0,ASCII) B256(A) (3) --> (1,B256) B256(B) (3) --> (2,B256) B256(C) (4) --> (3,B256) B256(D) (5) --> (4,B256) B256(E) (6) --> (5,B256)
* (0,ASCII) ASCII(A) (1) --> (1,ASCII) ASCII(B) (2) --> (2,ASCII) ASCII(C) (3) --> (3,ASCII) ASCII(D) (4) --> (4,ASCII) ASCII(E) (5) --> (5,ASCII) ASCII(F) (6) --> (6,ASCII)
* (0,ASCII) B256(A) (3) --> (1,B256) B256(B) (3) --> (2,B256) B256(C) (4) --> (3,B256) B256(D) (5) --> (4,B256) B256(E) (6) --> (5,B256) B256(F) (7) --> (6,B256)
* (0,ASCII) ASCII(A) (1) --> (1,ASCII) ASCII(B) (2) --> (2,ASCII) ASCII(C) (3) --> (3,ASCII) ASCII(D) (4) --> (4,ASCII) ASCII(E) (5) --> (5,ASCII) ASCII(F) (6) --> (6,ASCII) ASCII(G) (7) --> (7,ASCII)
* (0,ASCII) B256(A) (3) --> (1,B256) B256(B) (3) --> (2,B256) B256(C) (4) --> (3,B256) B256(D) (5) --> (4,B256) B256(E) (6) --> (5,B256) B256(F) (7) --> (6,B256) B256(G) (8) --> (7,B256)
*
* Hence a minimal encoding of "ABCDEFG" is either ASCII(A),C40(BCDEFG) or ASCII(A), X12(BCDEFG) with a size of 5 bytes.
*/
let inputLength = input.length();
// Array that represents vertices. There is a vertex for every character and Mode::
// The last dimension in the array below encodes the 6 modes ASCII, C40, TEXT, X12, EDF and B256
// let edges = new Edge[inputLength + 1][6];
let mut edges = vec![vec![None; 6]; inputLength + 1];
addEdges(input.clone(), &mut edges, 0, None)?;
for i in 1..=inputLength {
// for (int i = 1; i <= inputLength; i++) {
for j in 0..6 {
// for (int j = 0; j < 6; j++) {
if edges[i][j].is_some() && i < inputLength {
let edge = edges[i][j].clone();
addEdges(input.clone(), &mut edges, i as u32, edge)?;
}
}
//optimize memory by removing edges that have been passed.
for j in 0..6 {
// for (int j = 0; j < 6; j++) {
edges[i - 1][j] = None;
}
}
let mut minimalJ: i32 = -1;
let mut minimalSize = i32::MAX;
for j in 0..6 {
// for (int j = 0; j < 6; j++) {
if edges[inputLength][j].is_some() {
let edge = edges[inputLength][j].as_ref().unwrap();
let size = if j >= 1 && j <= 3 {
edge.cachedTotalSize + 1
} else {
edge.cachedTotalSize
}; //C40, TEXT and X12 need an
// extra unlatch at the end
if (size as i32) < minimalSize {
minimalSize = size as i32;
minimalJ = j as i32;
}
}
}
if minimalJ < 0 {
return Err(Exceptions::RuntimeException(format!(
"Internal error: failed to encode \"{}\"",
input
)));
}
RXingResult::new(edges[inputLength][minimalJ as usize].clone())
}
const ALL_CODEWORD_CAPACITIES: [u32; 28] = [
3, 5, 8, 10, 12, 16, 18, 22, 30, 32, 36, 44, 49, 62, 86, 114, 144, 174, 204, 280, 368, 456,
576, 696, 816, 1050, 1304, 1558,
];
const SQUARE_CODEWORD_CAPACITIES: [u32; 24] = [
3, 5, 8, 12, 18, 22, 30, 36, 44, 62, 86, 114, 144, 174, 204, 280, 368, 456, 576, 696, 816,
1050, 1304, 1558,
];
const RECTANGULAR_CODEWORD_CAPACITIES: [u32; 6] = [5, 10, 16, 33, 32, 49];
struct Edge {
input: Rc<Input>,
mode: Mode, //the mode at the start of this edge.
fromPosition: u32,
characterLength: u32,
previous: Option<Rc<Edge>>,
cachedTotalSize: u32,
}
impl Edge {
fn new(
input: Rc<Input>,
mode: Mode,
fromPosition: u32,
characterLength: u32,
previous: Option<Rc<Edge>>,
) -> Result<Self, Exceptions> {
// this.input = input;
// this.mode = mode;
// this.fromPosition = fromPosition;
// this.characterLength = characterLength;
// this.previous = previous;
assert!(fromPosition + characterLength <= input.length() as u32);
let mut size = if let Some(previous) = previous.clone() {
previous.cachedTotalSize
} else {
0
};
let previousMode = Self::getPreviousMode(previous.clone())?;
/*
* Switching modes
* ASCII -> C40: latch 230
* ASCII -> TEXT: latch 239
* ASCII -> X12: latch 238
* ASCII -> EDF: latch 240
* ASCII -> B256: latch 231
* C40 -> ASCII: word(c1,c2,c3), 254
* TEXT -> ASCII: word(c1,c2,c3), 254
* X12 -> ASCII: word(c1,c2,c3), 254
* EDIFACT -> ASCII: Unlatch character,0,0,0 or c1,Unlatch character,0,0 or c1,c2,Unlatch character,0 or
* c1,c2,c3,Unlatch character
* B256 -> ASCII: without latch after n bytes
*/
match mode {
Mode::ASCII => {
size += 1;
if input.isECI(fromPosition).expect("bool")
|| isExtendedASCII(
input
.charAt(fromPosition as usize)
.expect("char must exist)"),
input.getFNC1Character(),
)
{
size += 1;
}
if previousMode == Mode::C40
|| previousMode == Mode::TEXT
|| previousMode == Mode::X12
{
size += 1; // unlatch 254 to ASCII
}
}
Mode::B256 => {
size += 1;
if previousMode != Mode::B256 {
size += 1; //byte count
} else if Self::getB256Size(mode, previous.clone()) == 250 {
size += 1; //extra byte count
}
if previousMode == Mode::ASCII {
size += 1; //latch to B256
} else if previousMode == Mode::C40
|| previousMode == Mode::TEXT
|| previousMode == Mode::X12
{
size += 2; //unlatch to ASCII, latch to B256
}
}
Mode::C40 | Mode::TEXT | Mode::X12 => {
if mode == Mode::X12 {
size += 2;
} else {
let mut charLen = [0u32; 1];
size += getNumberOfC40Words(
input.clone(),
fromPosition,
mode == Mode::C40,
&mut charLen,
)
.expect("works")
* 2;
}
if previousMode == Mode::ASCII || previousMode == Mode::B256 {
size += 1; //additional byte for latch from ASCII to this mode
} else if previousMode != mode
&& (previousMode == Mode::C40
|| previousMode == Mode::TEXT
|| previousMode == Mode::X12)
{
size += 2; //unlatch 254 to ASCII followed by latch to this mode
}
}
Mode::EDF => {
size += 3;
if previousMode == Mode::ASCII || previousMode == Mode::B256 {
size += 1; //additional byte for latch from ASCII to this mode
} else if previousMode == Mode::C40
|| previousMode == Mode::TEXT
|| previousMode == Mode::X12
{
size += 2; //unlatch 254 to ASCII followed by latch to this mode
}
}
}
Ok(Self {
input,
mode,
fromPosition,
characterLength,
previous,
cachedTotalSize: size,
})
// cachedTotalSize = size;
}
// does not count beyond 250
pub fn getB256Size(mode: Mode, previous: Option<Rc<Edge>>) -> u32 {
if mode != Mode::B256 {
return 0;
}
let mut cnt = 1;
let mut current = previous;
while current.is_some() && current.as_ref().unwrap().mode == Mode::B256 && cnt <= 250 {
cnt += 1;
current = current.clone().as_ref().unwrap().previous.clone();
}
// let cnt = 0;
// Edge current = this;
// while (current != null && current.mode == Mode::B256 && cnt <= 250) {
// cnt+=1;
// current = current.previous;
// }
cnt
}
pub fn getPreviousStartMode(previous: Option<Rc<Edge>>) -> Mode {
if let Some(prev) = previous {
prev.mode
} else {
Mode::ASCII
}
// if previous.is_none() { Mode::ASCII} else {previous.as_ref().unwrap().mode}
}
pub fn getPreviousMode(previous: Option<Rc<Edge>>) -> Result<Mode, Exceptions> {
if let Some(prev) = previous {
prev.getEndMode()
} else {
Ok(Mode::ASCII)
}
// return previous == null ? Mode::ASCII : previous.getEndMode();
}
/** Returns Mode::ASCII in case that:
* - Mode is EDIFACT and characterLength is less than 4 or the remaining characters can be encoded in at most 2
* ASCII bytes.
* - Mode is C40, TEXT or X12 and the remaining characters can be encoded in at most 1 ASCII byte.
* Returns mode in all other cases.
* */
pub fn getEndMode(&self) -> Result<Mode, Exceptions> {
let mode = self.mode;
if mode == Mode::EDF {
if self.characterLength < 4 {
return Ok(Mode::ASCII);
}
let lastASCII = Self::getLastASCII(&self)?; // see 5.2.8.2 EDIFACT encodation Rules
if lastASCII > 0
&& self.getCodewordsRemaining(self.cachedTotalSize + lastASCII) <= 2 - lastASCII
{
return Ok(Mode::ASCII);
}
}
if mode == Mode::C40 || mode == Mode::TEXT || mode == Mode::X12 {
// see 5.2.5.2 C40 encodation rules and 5.2.7.2 ANSI X12 encodation rules
if self.fromPosition + self.characterLength >= self.input.length() as u32
&& self.getCodewordsRemaining(self.cachedTotalSize) == 0
{
return Ok(Mode::ASCII);
}
let lastASCII = Self::getLastASCII(&self)?;
if lastASCII == 1 && self.getCodewordsRemaining(self.cachedTotalSize + 1) == 0 {
return Ok(Mode::ASCII);
}
}
Ok(mode)
}
pub fn getMode(&self) -> Mode {
self.mode
}
/** Peeks ahead and returns 1 if the postfix consists of exactly two digits, 2 if the postfix consists of exactly
* two consecutive digits and a non extended character or of 4 digits.
* Returns 0 in any other case
**/
pub fn getLastASCII(&self) -> Result<u32, Exceptions> {
let length = self.input.length() as u32;
let from = self.fromPosition + self.characterLength;
if length - from > 4 || from >= length {
return Ok(0);
}
if length - from == 1 {
if isExtendedASCII(
self.input.charAt(from as usize)?,
self.input.getFNC1Character(),
) {
return Ok(0);
}
return Ok(1);
}
if length - from == 2 {
if isExtendedASCII(
self.input.charAt(from as usize)?,
self.input.getFNC1Character(),
) || isExtendedASCII(
self.input.charAt(from as usize + 1)?,
self.input.getFNC1Character(),
) {
return Ok(0);
}
if high_level_encoder::isDigit(self.input.charAt(from as usize)?)
&& high_level_encoder::isDigit(self.input.charAt(from as usize + 1)?)
{
return Ok(1);
}
return Ok(2);
}
if length - from == 3 {
if high_level_encoder::isDigit(self.input.charAt(from as usize)?)
&& high_level_encoder::isDigit(self.input.charAt(from as usize + 1)?)
&& !isExtendedASCII(
self.input.charAt(from as usize + 2)?,
self.input.getFNC1Character(),
)
{
return Ok(2);
}
if high_level_encoder::isDigit(self.input.charAt(from as usize + 1)?)
&& high_level_encoder::isDigit(self.input.charAt(from as usize + 2)?)
&& !isExtendedASCII(
self.input.charAt(from as usize)?,
self.input.getFNC1Character(),
)
{
return Ok(2);
}
return Ok(0);
}
if high_level_encoder::isDigit(self.input.charAt(from as usize)?)
&& high_level_encoder::isDigit(self.input.charAt(from as usize + 1)?)
&& high_level_encoder::isDigit(self.input.charAt(from as usize + 2)?)
&& high_level_encoder::isDigit(self.input.charAt(from as usize + 3)?)
{
return Ok(2);
}
Ok(0)
}
/** Returns the capacity in codewords of the smallest symbol that has enough capacity to fit the given minimal
* number of codewords.
**/
pub fn getMinSymbolSize(&self, minimum: u32) -> u32 {
match self.input.getShapeHint() {
SymbolShapeHint::FORCE_SQUARE => {
for capacity in SQUARE_CODEWORD_CAPACITIES {
// for (int capacity : squareCodewordCapacities) {
if capacity >= minimum {
return capacity;
}
}
}
SymbolShapeHint::FORCE_RECTANGLE => {
for capacity in RECTANGULAR_CODEWORD_CAPACITIES {
// for (int capacity : rectangularCodewordCapacities) {
if capacity >= minimum {
return capacity;
}
}
}
_ => {}
}
for capacity in ALL_CODEWORD_CAPACITIES {
// for (int capacity : allCodewordCapacities) {
if capacity >= minimum {
return capacity;
}
}
ALL_CODEWORD_CAPACITIES[ALL_CODEWORD_CAPACITIES.len() - 1]
}
/** Returns the remaining capacity in codewords of the smallest symbol that has enough capacity to fit the given
* minimal number of codewords.
**/
pub fn getCodewordsRemaining(&self, minimum: u32) -> u32 {
Self::getMinSymbolSize(&self, minimum) - minimum
}
pub fn getBytes1(c: u32) -> Vec<u8> {
// let result = vec![0u8;1];
// result[0] = c as u8;
// result
vec![c as u8]
}
pub fn getBytes2(c1: u32, c2: u32) -> Vec<u8> {
// byte[] result = new byte[2];
// result[0] = (byte) c1;
// result[1] = (byte) c2;
// return result;
vec![c1 as u8, c2 as u8]
}
pub fn setC40Word(bytes: &mut [u8], offset: u32, c1: u32, c2: u32, c3: u32) {
let val16 = (1600 * (c1 & 0xff)) + (40 * (c2 & 0xff)) + (c3 & 0xff) + 1;
bytes[offset as usize] = (val16 / 256) as u8;
bytes[offset as usize + 1] = (val16 % 256) as u8;
}
fn getX12Value(c: char) -> u32 {
let c = c as u32;
if c == 13 {
0
} else if c == 42 {
1
} else if c == 62 {
2
} else if c == 32 {
3
} else if c >= 48 && c <= 57 {
c - 44
} else if c >= 65 && c <= 90 {
c - 51
} else {
c
}
}
pub fn getX12Words(&self) -> Result<Vec<u8>, Exceptions> {
assert!(self.characterLength % 3 == 0);
let mut result = vec![0u8; self.characterLength as usize / 3 * 2];
let mut i = 0;
while i < result.len() {
// for (int i = 0; i < result.length; i += 2) {
Self::setC40Word(
&mut result,
i as u32,
Self::getX12Value(self.input.charAt(self.fromPosition as usize + i / 2 * 3)?),
Self::getX12Value(
self.input
.charAt(self.fromPosition as usize + i / 2 * 3 + 1)?,
),
Self::getX12Value(
self.input
.charAt(self.fromPosition as usize + i / 2 * 3 + 2)?,
),
);
i += 2;
}
return Ok(result);
}
pub fn getShiftValue(c: char, c40: bool, fnc1: Option<char>) -> u32 {
if c40 && isInC40Shift1Set(c) || !c40 && isInTextShift1Set(c) {
0
} else if c40 && isInC40Shift2Set(c, fnc1) || !c40 && isInTextShift2Set(c, fnc1) {
1
} else {
2
}
}
fn getC40Value(c40: bool, setIndex: u32, c: char, fnc1: Option<char>) -> u32 {
if let Some(fnc1_char) = fnc1 {
if c == fnc1_char {
assert!(setIndex == 2);
return 27;
}
}
if c40 {
let c = c as u32;
return if c <= 31 {
c
} else if c == 32 {
3
} else if c <= 47 {
c - 33
} else if c <= 57 {
c - 44
} else if c <= 64 {
c - 43
} else if c <= 90 {
c - 51
} else if c <= 95 {
c - 69
} else if c <= 127 {
c - 96
} else {
c
};
} else {
let c = c as u32;
return if c == 0 {
0
} else if setIndex == 0 && c <= 3 {
c - 1
} else if
//is this a bug in the spec?
setIndex == 1 && c <= 31 {
c
} else if c == 32 {
3
} else if c >= 33 && c <= 47 {
c - 33
} else if c >= 48 && c <= 57 {
c - 44
} else if c >= 58 && c <= 64 {
c - 43
} else if c >= 65 && c <= 90 {
c - 64
} else if c >= 91 && c <= 95 {
c - 69
} else if c == 96 {
0
} else if c >= 97 && c <= 122 {
c - 83
} else if c >= 123 && c <= 127 {
c - 96
} else {
c
};
}
}
pub fn getC40Words(&self, c40: bool, fnc1: Option<char>) -> Result<Vec<u8>, Exceptions> {
let mut c40Values: Vec<u8> = Vec::new();
let fromPosition = self.fromPosition as usize;
for i in 0..self.characterLength as usize {
// for (int i = 0; i < characterLength; i++) {
let ci = self.input.charAt(fromPosition + i)?;
if c40 && high_level_encoder::isNativeC40(ci)
|| !c40 && high_level_encoder::isNativeText(ci)
{
c40Values.push(Self::getC40Value(c40, 0, ci, fnc1) as u8);
} else if !isExtendedASCII(ci, fnc1) {
let shiftValue = Self::getShiftValue(ci, c40, fnc1);
c40Values.push(shiftValue as u8); //Shift[123]
c40Values.push(Self::getC40Value(c40, shiftValue, ci, fnc1) as u8);
} else {
let asciiValue = ((ci as u8 & 0xff) - 128) as char;
if c40 && high_level_encoder::isNativeC40(asciiValue)
|| !c40 && high_level_encoder::isNativeText(asciiValue)
{
c40Values.push(1); //Shift 2
c40Values.push(30); //Upper Shift
c40Values.push(Self::getC40Value(c40, 0, asciiValue, fnc1) as u8);
} else {
c40Values.push(1); //Shift 2
c40Values.push(30); //Upper Shift
let shiftValue = Self::getShiftValue(asciiValue, c40, fnc1);
c40Values.push(shiftValue as u8); // Shift[123]
c40Values.push(Self::getC40Value(c40, shiftValue, asciiValue, fnc1) as u8);
}
}
}
if (c40Values.len() % 3) != 0 {
assert!(
(c40Values.len() - 2) % 3 == 0
&& fromPosition + self.characterLength as usize == self.input.length()
);
c40Values.push(0); // pad with 0 (Shift 1)
}
let mut result = vec![0u8; c40Values.len() / 3 * 2];
let mut byteIndex = 0;
let mut i = 0;
while i < c40Values.len() {
// for (int i = 0; i < c40Values.size(); i += 3) {
Self::setC40Word(
&mut result,
byteIndex,
c40Values[i] as u32,
c40Values[i + 1] as u32,
c40Values[i + 2] as u32,
);
byteIndex += 2;
i += 3;
}
Ok(result)
}
pub fn getEDFBytes(&self) -> Result<Vec<u8>, Exceptions> {
let numberOfThirds = (self.characterLength as f32 / 4.0).ceil() as usize;
let mut result = vec![0u8; numberOfThirds * 3];
let mut pos = self.fromPosition as usize;
let endPos = (self.fromPosition as usize + self.characterLength as usize - 1)
.min(self.input.length() - 1);
let mut i = 0;
while i < numberOfThirds {
// for (int i = 0; i < numberOfThirds; i += 3) {
let mut edfValues = [0u32; 4];
for j in 0..4 {
// for (int j = 0; j < 4; j++) {
if pos <= endPos {
edfValues[j] = self.input.charAt(pos)? as u32 & 0x3f;
pos += 1;
} else {
edfValues[j] = if pos == endPos + 1 { 0x1f } else { 0 };
}
}
let mut val24 = edfValues[0] << 18;
val24 |= edfValues[1] << 12;
val24 |= edfValues[2] << 6;
val24 |= edfValues[3];
result[i] = ((val24 >> 16) & 0xff) as u8;
result[i + 1] = ((val24 >> 8) & 0xff) as u8;
result[i + 2] = (val24 & 0xff) as u8;
i += 3;
}
Ok(result)
}
pub fn getLatchBytes(&self) -> Result<Vec<u8>, Exceptions> {
match Self::getPreviousMode(self.previous.clone())? {
Mode::ASCII | Mode::B256 =>
//after B256 ends (via length) we are back to ASCII
{
match self.mode {
Mode::B256 => return Ok(Self::getBytes1(231)),
Mode::C40 => return Ok(Self::getBytes1(230)),
Mode::TEXT => return Ok(Self::getBytes1(239)),
Mode::X12 => return Ok(Self::getBytes1(238)),
Mode::EDF => return Ok(Self::getBytes1(240)),
_ => {}
}
}
Mode::C40 | Mode::TEXT | Mode::X12
if self.mode != Self::getPreviousMode(self.previous.clone())? =>
{
match self.mode {
Mode::ASCII => return Ok(Self::getBytes1(254)),
Mode::B256 => return Ok(Self::getBytes2(254, 231)),
Mode::C40 => return Ok(Self::getBytes2(254, 230)),
Mode::TEXT => return Ok(Self::getBytes2(254, 239)),
Mode::X12 => return Ok(Self::getBytes2(254, 238)),
Mode::EDF => return Ok(Self::getBytes2(254, 240)),
}
}
Mode::C40 | Mode::TEXT | Mode::X12 => {}
Mode::EDF => assert!(self.mode == Mode::EDF), //The rightmost EDIFACT edge always contains an unlatch character
}
Ok(Vec::new())
}
// Important: The function does not return the length bytes (one or two) in case of B256 encoding
pub fn getDataBytes(&self) -> Result<Vec<u8>, Exceptions> {
match self.mode {
Mode::ASCII => {
if self.input.isECI(self.fromPosition)? {
return Ok(Self::getBytes2(
241,
self.input.getECIValue(self.fromPosition as usize)? as u32 + 1,
));
} else if isExtendedASCII(
self.input.charAt(self.fromPosition as usize)?,
self.input.getFNC1Character(),
) {
return Ok(Self::getBytes2(
235,
self.input.charAt(self.fromPosition as usize)? as u32 - 127,
));
} else if self.characterLength == 2 {
return Ok(Self::getBytes1(
(self.input.charAt(self.fromPosition as usize)? as u32 - b'0' as u32) * 10
+ self.input.charAt(self.fromPosition as usize + 1)? as u32
- b'0' as u32
+ 130,
));
} else if self.input.isFNC1(self.fromPosition as usize)? {
return Ok(Self::getBytes1(232));
} else {
return Ok(Self::getBytes1(
self.input.charAt(self.fromPosition as usize)? as u32 + 1,
));
}
}
Mode::B256 => {
return Ok(Self::getBytes1(
self.input.charAt(self.fromPosition as usize)? as u32,
))
}
Mode::C40 => return self.getC40Words(true, self.input.getFNC1Character()),
Mode::TEXT => return self.getC40Words(false, self.input.getFNC1Character()),
Mode::X12 => return self.getX12Words(),
Mode::EDF => return self.getEDFBytes(),
}
// assert!( false);
// Ok(vec![0])
}
}
struct RXingResult {
bytes: Vec<u8>,
}
impl RXingResult {
pub fn new(solution: Option<Rc<Edge>>) -> Result<Self, Exceptions> {
let solution = if let Some(edge) = solution {
edge
} else {
return Err(Exceptions::IllegalArgumentException("()".to_string()));
};
let input = solution.input.clone();
let mut size = 0;
let mut bytesAL = Vec::new(); //new ArrayList<>();
let mut randomizePostfixLength = Vec::new(); //new ArrayList<>();
let mut randomizeLengths = Vec::new(); //new ArrayList<>();
if (solution.mode == Mode::C40 || solution.mode == Mode::TEXT || solution.mode == Mode::X12)
&& solution.getEndMode()? != Mode::ASCII
{
size += Self::prepend(&Edge::getBytes1(254), &mut bytesAL);
}
let mut hold_current = Some(solution.clone());
while let Some(current) = hold_current {
// Fails on i = 77 should be 151 is 144
size += Self::prepend(¤t.getDataBytes()?, &mut bytesAL);
if current.previous.is_none()
|| Edge::getPreviousStartMode(current.previous.clone()) != current.getMode()
{
if current.getMode() == Mode::B256 {
if size <= 249 {
bytesAL.insert(0, size as u8);
size += 1;
} else {
bytesAL.insert(0, (size % 250) as u8);
bytesAL.insert(0, (size / 250 + 249) as u8);
size += 2;
}
randomizePostfixLength.push(bytesAL.len());
randomizeLengths.push(size);
}
Self::prepend(¤t.getLatchBytes()?, &mut bytesAL);
size = 0;
}
hold_current = current.previous.clone();
}
if input.getMacroId() == 5 {
_ = Self::prepend(&Edge::getBytes1(236), &mut bytesAL);
} else if input.getMacroId() == 6 {
_ = Self::prepend(&Edge::getBytes1(237), &mut bytesAL);
}
if input.getFNC1Character().is_some() {
_ = Self::prepend(&Edge::getBytes1(232), &mut bytesAL);
}
for i in 0..randomizePostfixLength.len() {
// for (int i = 0; i < randomizePostfixLength.size(); i++) {
let bytes_al_len = bytesAL.len() as u32;
Self::applyRandomPattern(
&mut bytesAL,
bytes_al_len - *randomizePostfixLength.get(i).unwrap() as u32,
*randomizeLengths.get(i).unwrap() as u32,
);
}
//add padding
let capacity = solution.getMinSymbolSize(bytesAL.len() as u32);
if bytesAL.len() < capacity as usize {
bytesAL.push(129);
}
while bytesAL.len() < capacity as usize {
bytesAL.push(Self::randomize253State(bytesAL.len() as u32 + 1) as u8);
}
let mut bytes = vec![0u8; bytesAL.len()];
for i in 0..bytes.len() {
// for (int i = 0; i < bytes.length; i++) {
bytes[i] = *bytesAL.get(i).unwrap();
}
Ok(Self { bytes })
}
pub fn prepend(bytes: &[u8], into: &mut Vec<u8>) -> usize {
for i in (0..bytes.len()).rev() {
// for (int i = bytes.length - 1; i >= 0; i--) {
into.insert(0, bytes[i]);
}
bytes.len()
}
fn randomize253State(codewordPosition: u32) -> u32 {
let pseudoRandom = ((149 * codewordPosition) % 253) + 1;
let tempVariable = 129 + pseudoRandom;
if tempVariable <= 254 {
tempVariable
} else {
tempVariable - 254
}
}
pub fn applyRandomPattern(bytesAL: &mut [u8], startPosition: u32, length: u32) {
for i in 0..length as usize {
// for (int i = 0; i < length; i++) {
//See "B.1 253-state algorithm
let Pad_codeword_position = startPosition as usize + i;
let Pad_codeword_value = bytesAL.get(Pad_codeword_position).expect("known to exist");
let pseudo_random_number = ((149 * (Pad_codeword_position + 1)) % 255) + 1;
let temp_variable: u16 = *Pad_codeword_value as u16 + pseudo_random_number as u16;
bytesAL[Pad_codeword_position] = if temp_variable <= 255 {
temp_variable as u8
} else {
(temp_variable - 256) as u8
};
}
}
pub fn getBytes(&self) -> &[u8] {
&self.bytes
}
}
struct Input {
shape: SymbolShapeHint,
macroId: i32,
internal: MinimalECIInput,
}
impl Input {
pub fn new(
stringToEncode: &str,
priorityCharset: Option<EncodingRef>,
fnc1: Option<char>,
shape: SymbolShapeHint,
macroId: i32,
) -> Self {
let z = fnc1.unwrap_or_default().to_string();
let v = if fnc1.is_some() {
Some(z.as_str())
} else {
None
};
Self {
shape,
macroId,
internal: MinimalECIInput::new(stringToEncode, priorityCharset, v),
}
}
pub fn getMacroId(&self) -> i32 {
self.macroId
}
pub fn getShapeHint(&self) -> SymbolShapeHint {
self.shape
}
pub fn length(&self) -> usize {
self.internal.length()
}
pub fn isECI(&self, index: u32) -> Result<bool, Exceptions> {
self.internal.isECI(index)
}
pub fn charAt(&self, index: usize) -> Result<char, Exceptions> {
self.internal.charAt(index)
}
pub fn getFNC1Character(&self) -> Option<char> {
if self.internal.getFNC1Character() == 1000 {
None
} else {
Some(self.internal.getFNC1Character() as u8 as char)
}
}
fn haveNCharacters(&self, index: usize, n: usize) -> bool {
self.internal.haveNCharacters(index, n)
}
fn isFNC1(&self, index: usize) -> Result<bool, Exceptions> {
self.internal.isFNC1(index)
}
fn getECIValue(&self, index: usize) -> Result<i32, Exceptions> {
self.internal.getECIValue(index)
}
}
impl fmt::Display for Input {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
self.internal.fmt(f)
}
}