1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
/*
 * Copyright 2007 ZXing authors
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

// package com.google.zxing.common;

// import java.util.Arrays;

use std::fmt;

use crate::Exceptions;

use super::BitArray;

/**
 * <p>Represents a 2D matrix of bits. In function arguments below, and throughout the common
 * module, x is the column position, and y is the row position. The ordering is always x, y.
 * The origin is at the top-left.</p>
 *
 * <p>Internally the bits are represented in a 1-D array of 32-bit ints. However, each row begins
 * with a new int. This is done intentionally so that we can copy out a row into a BitArray very
 * efficiently.</p>
 *
 * <p>The ordering of bits is row-major. Within each int, the least significant bits are used first,
 * meaning they represent lower x values. This is compatible with BitArray's implementation.</p>
 *
 * @author Sean Owen
 * @author dswitkin@google.com (Daniel Switkin)
 */
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
pub struct BitMatrix {
    width: u32,
    height: u32,
    row_size: usize,
    bits: Vec<u32>,
}

impl BitMatrix {
    /**
     * Creates an empty square {@code BitMatrix}.
     *
     * @param dimension height and width
     */
    pub fn with_single_dimension(dimension: u32) -> Self {
        Self::new(dimension, dimension).unwrap()
    }

    /**
     * Creates an empty {@code BitMatrix}.
     *
     * @param width bit matrix width
     * @param height bit matrix height
     */
    pub fn new(width: u32, height: u32) -> Result<Self, Exceptions> {
        if width < 1 || height < 1 {
            return Err(Exceptions::IllegalArgumentException(
                "Both dimensions must be greater than 0".to_owned(),
            ));
        }
        Ok(Self {
            width,
            height,
            row_size: ((width + 31) / 32) as usize,
            bits: vec![0; (((width + 31) / 32) * height) as usize],
        })
        // this.width = width;
        // this.height = height;
        // this.rowSize = (width + 31) / 32;
        // bits = new int[rowSize * height];
    }

    #[allow(dead_code)]
    fn with_all_data(&self, width: u32, height: u32, rowSize: usize, bits: Vec<u32>) -> Self {
        Self {
            width,
            height,
            row_size: rowSize,
            bits,
        }
    }

    /**
     * Interprets a 2D array of booleans as a {@code BitMatrix}, where "true" means an "on" bit.
     *
     * @param image bits of the image, as a row-major 2D array. Elements are arrays representing rows
     * @return {@code BitMatrix} representation of image
     */
    pub fn parse_bools(image: &Vec<Vec<bool>>) -> Self {
        let height: u32 = image.len().try_into().unwrap();
        let width: u32 = image[0].len().try_into().unwrap();
        let mut bits = BitMatrix::new(width, height).unwrap();
        for i in 0..height as usize {
            //for (int i = 0; i < height; i++) {
            let imageI = &image[i];
            for j in 0..width as usize {
                //for (int j = 0; j < width; j++) {
                if imageI[j] {
                    bits.set(j as u32, i as u32);
                }
            }
        }
        return bits;
    }

    pub fn parse_strings(
        string_representation: &str,
        set_string: &str,
        unset_string: &str,
    ) -> Result<Self, Exceptions> {
        // cannot pass nulls in rust
        // if (stringRepresentation == null) {
        //   throw new IllegalArgumentException();
        // }

        let mut bits = vec![false; string_representation.len()];
        let mut bitsPos = 0;
        let mut rowStartPos = 0;
        let mut rowLength = 0; //-1;
        let mut first_run = true;
        let mut nRows = 0;
        let mut pos = 0;
        while pos < string_representation.len() {
            if string_representation.chars().nth(pos).unwrap() == '\n'
                || string_representation.chars().nth(pos).unwrap() == '\r'
            {
                if bitsPos > rowStartPos {
                    //if rowLength == -1 {
                    if first_run {
                        first_run = false;
                        rowLength = bitsPos - rowStartPos;
                    } else if bitsPos - rowStartPos != rowLength {
                        return Err(Exceptions::IllegalArgumentException(
                            "row lengths do not match".to_owned(),
                        ));
                    }
                    rowStartPos = bitsPos;
                    nRows += 1;
                }
                pos += 1;
            } else if string_representation[pos..].starts_with(set_string) {
                pos += set_string.len();
                bits[bitsPos] = true;
                bitsPos += 1;
            } else if string_representation[pos..].starts_with(unset_string) {
                pos += unset_string.len();
                bits[bitsPos] = false;
                bitsPos += 1;
            } else {
                return Err(Exceptions::IllegalArgumentException(format!(
                    "illegal character encountered: {}",
                    string_representation[pos..].to_owned()
                )));
            }
        }

        // no EOL at end?
        if bitsPos > rowStartPos {
            //if rowLength == -1 {
            if first_run {
                // first_run = false;
                rowLength = bitsPos - rowStartPos;
            } else if bitsPos - rowStartPos != rowLength {
                return Err(Exceptions::IllegalArgumentException(
                    "row lengths do not match".to_owned(),
                ));
            }
            nRows += 1;
        }

        let mut matrix = BitMatrix::new(rowLength.try_into().unwrap(), nRows)?;
        for i in 0..bitsPos {
            //for (int i = 0; i < bitsPos; i++) {
            if bits[i] {
                matrix.set(
                    (i % rowLength).try_into().unwrap(),
                    (i / rowLength).try_into().unwrap(),
                );
            }
        }
        return Ok(matrix);
    }

    /**
     * <p>Gets the requested bit, where true means black.</p>
     *
     * @param x The horizontal component (i.e. which column)
     * @param y The vertical component (i.e. which row)
     * @return value of given bit in matrix
     */
    pub fn get(&self, x: u32, y: u32) -> bool {
        let offset = y as usize * self.row_size + (x as usize / 32);
        return ((self.bits[offset] >> (x & 0x1f)) & 1) != 0;
    }

    pub fn try_get(&self, x: u32, y: u32) -> Result<bool, Exceptions> {
        let offset = y as usize * self.row_size + (x as usize / 32);
        if offset > self.bits.len() {
            return Err(Exceptions::IndexOutOfBoundsException("".to_owned()));
        }
        return Ok(((self.bits[offset] >> (x & 0x1f)) & 1) != 0);
    }

    /**
     * <p>Sets the given bit to true.</p>
     *
     * @param x The horizontal component (i.e. which column)
     * @param y The vertical component (i.e. which row)
     */
    pub fn set(&mut self, x: u32, y: u32) {
        let offset = y as usize * self.row_size + (x as usize / 32);
        self.bits[offset] |= 1 << (x & 0x1f);
    }

    pub fn unset(&mut self, x: u32, y: u32) {
        let offset = y as usize * self.row_size + (x as usize / 32);
        self.bits[offset] &= !(1 << (x & 0x1f));
    }

    /**
     * <p>Flips the given bit.</p>
     *
     * @param x The horizontal component (i.e. which column)
     * @param y The vertical component (i.e. which row)
     */
    pub fn flip_coords(&mut self, x: u32, y: u32) {
        let offset = y as usize * self.row_size + (x as usize / 32);
        self.bits[offset] ^= 1 << (x & 0x1f);
    }

    /**
     * <p>Flips every bit in the matrix.</p>
     */
    pub fn flip_self(&mut self) {
        let max = self.bits.len();
        for i in 0..max {
            //for (int i = 0; i < max; i++) {
            self.bits[i] = !self.bits[i];
        }
    }

    /**
     * Exclusive-or (XOR): Flip the bit in this {@code BitMatrix} if the corresponding
     * mask bit is set.
     *
     * @param mask XOR mask
     */
    pub fn xor(&mut self, mask: &BitMatrix) -> Result<(), Exceptions> {
        if self.width != mask.width || self.height != mask.height || self.row_size != mask.row_size
        {
            return Err(Exceptions::IllegalArgumentException(
                "input matrix dimensions do not match".to_owned(),
            ));
        }
        let mut rowArray = BitArray::with_size(self.width as usize);
        for y in 0..self.height {
            //for (int y = 0; y < height; y++) {
            let offset = y as usize * self.row_size;
            rowArray = mask.getRow(y, rowArray);
            let row = rowArray.getBitArray();
            for x in 0..self.row_size {
                //for (int x = 0; x < rowSize; x++) {
                self.bits[offset + x] ^= row[x];
            }
        }
        Ok(())
    }

    /**
     * Clears all bits (sets to false).
     */
    pub fn clear(&mut self) {
        let max = self.bits.len();
        for i in 0..max {
            //for (int i = 0; i < max; i++) {
            self.bits[i] = 0;
        }
    }

    /**
     * <p>Sets a square region of the bit matrix to true.</p>
     *
     * @param left The horizontal position to begin at (inclusive)
     * @param top The vertical position to begin at (inclusive)
     * @param width The width of the region
     * @param height The height of the region
     */
    pub fn setRegion(
        &mut self,
        left: u32,
        top: u32,
        width: u32,
        height: u32,
    ) -> Result<(), Exceptions> {
        // if top < 0 || left < 0 {
        //     return Err(Exceptions::IllegalArgumentException(
        //         "Left and top must be nonnegative".to_owned(),
        //     ));
        // }
        if height < 1 || width < 1 {
            return Err(Exceptions::IllegalArgumentException(
                "Height and width must be at least 1".to_owned(),
            ));
        }
        let right = left + width;
        let bottom = top + height;
        if bottom > self.height || right > self.width {
            return Err(Exceptions::IllegalArgumentException(
                "The region must fit inside the matrix".to_owned(),
            ));
        }
        for y in top..bottom {
            //for (int y = top; y < bottom; y++) {
            let offset = y as usize * self.row_size;
            for x in left..right {
                //for (int x = left; x < right; x++) {
                self.bits[offset + (x as usize / 32)] |= 1 << (x & 0x1f);
            }
        }
        Ok(())
    }

    /**
     * A fast method to retrieve one row of data from the matrix as a BitArray.
     *
     * @param y The row to retrieve
     * @param row An optional caller-allocated BitArray, will be allocated if null or too small
     * @return The resulting BitArray - this reference should always be used even when passing
     *         your own row
     */
    pub fn getRow(&self, y: u32, row: BitArray) -> BitArray {
        let mut rw: BitArray = if row.getSize() < self.width as usize {
            BitArray::with_size(self.width as usize)
        } else {
            let mut z = row; //row.clone();
            z.clear();
            z
            // row.clear();
            // row.clone()
        };

        let offset = y as usize * self.row_size;
        for x in 0..self.row_size {
            //for (int x = 0; x < rowSize; x++) {
            rw.setBulk(x * 32, self.bits[offset + x]);
        }
        return rw;
    }

    /**
     * @param y row to set
     * @param row {@link BitArray} to copy from
     */
    pub fn setRow(&mut self, y: u32, row: &BitArray) {
        return self.bits[y as usize * self.row_size..y as usize * self.row_size + self.row_size]
            .clone_from_slice(&row.getBitArray()[0..self.row_size]);
        //System.arraycopy(row.getBitArray(), 0, self.bits, y * self.rowSize, self.rowSize);
    }

    /**
     * Modifies this {@code BitMatrix} to represent the same but rotated the given degrees (0, 90, 180, 270)
     *
     * @param degrees number of degrees to rotate through counter-clockwise (0, 90, 180, 270)
     */
    pub fn rotate(&mut self, degrees: u32) -> Result<(), Exceptions> {
        match degrees % 360 {
            0 => Ok(()),
            90 => {
                self.rotate90();
                Ok(())
            }
            180 => {
                self.rotate180();
                Ok(())
            }
            270 => {
                self.rotate90();
                self.rotate180();
                Ok(())
            }
            _ => Err(Exceptions::IllegalArgumentException(
                "degrees must be a multiple of 0, 90, 180, or 270".to_owned(),
            )),
        }
    }

    /**
     * Modifies this {@code BitMatrix} to represent the same but rotated 180 degrees
     */
    pub fn rotate180(&mut self) {
        let mut topRow = BitArray::with_size(self.width as usize);
        let mut bottomRow = BitArray::with_size(self.width as usize);
        let maxHeight = (self.height + 1) / 2;
        for i in 0..maxHeight {
            //for (int i = 0; i < maxHeight; i++) {
            topRow = self.getRow(i, topRow);
            let bottomRowIndex = self.height - 1 - i;
            bottomRow = self.getRow(bottomRowIndex, bottomRow);
            topRow.reverse();
            bottomRow.reverse();
            self.setRow(i, &bottomRow);
            self.setRow(bottomRowIndex, &topRow);
        }
    }

    /**
     * Modifies this {@code BitMatrix} to represent the same but rotated 90 degrees counterclockwise
     */
    pub fn rotate90(&mut self) {
        let newWidth = self.height;
        let newHeight = self.width;
        let newRowSize = (newWidth + 31) / 32;
        let mut newBits = vec![0; (newRowSize * newHeight).try_into().unwrap()];

        for y in 0..self.height {
            //for (int y = 0; y < height; y++) {
            for x in 0..self.width {
                //for (int x = 0; x < width; x++) {
                let offset = y as usize * self.row_size + (x as usize / 32);
                if ((self.bits[offset] >> (x & 0x1f)) & 1) != 0 {
                    let newOffset: usize = ((newHeight - 1 - x) * newRowSize + (y / 32))
                        .try_into()
                        .unwrap();
                    newBits[newOffset] |= 1 << (y & 0x1f);
                }
            }
        }
        self.width = newWidth;
        self.height = newHeight;
        self.row_size = newRowSize.try_into().unwrap();
        self.bits = newBits;
    }

    /**
     * This is useful in detecting the enclosing rectangle of a 'pure' barcode.
     *
     * @return {@code left,top,width,height} enclosing rectangle of all 1 bits, or null if it is all white
     */
    pub fn getEnclosingRectangle(&self) -> Option<Vec<u32>> {
        let mut left = self.width;
        let mut top = self.height;
        // let right = -1;
        // let bottom = -1;
        let mut right: u32 = 0;
        let mut bottom = 0;

        for y in 0..self.height {
            //for (int y = 0; y < height; y++) {
            for x32 in 0..self.row_size {
                //for (int x32 = 0; x32 < rowSize; x32++) {
                let theBits = self.bits[y as usize * self.row_size + x32];
                if theBits != 0 {
                    if y < top {
                        top = y;
                    }
                    if y > bottom {
                        bottom = y;
                    }
                    if x32 * 32 < left.try_into().unwrap() {
                        let mut bit = 0;
                        while (theBits << (31 - bit)) == 0 {
                            bit += 1;
                        }
                        if (x32 * 32 + bit) < left.try_into().unwrap() {
                            left = (x32 * 32 + bit).try_into().unwrap();
                        }
                    }
                    if x32 * 32 + 31 > right.try_into().unwrap() {
                        let mut bit = 31;
                        while (theBits >> bit) == 0 {
                            bit -= 1;
                        }
                        if (x32 * 32 + bit) > right.try_into().unwrap() {
                            right = (x32 * 32 + bit).try_into().unwrap();
                        }
                    }
                }
            }
        }

        if right < left || bottom < top {
            return None;
        }

        return Some(vec![left, top, right - left + 1, bottom - top + 1]);
    }

    /**
     * This is useful in detecting a corner of a 'pure' barcode.
     *
     * @return {@code x,y} coordinate of top-left-most 1 bit, or null if it is all white
     */
    pub fn getTopLeftOnBit(&self) -> Option<Vec<u32>> {
        let mut bitsOffset = 0;
        while bitsOffset < self.bits.len() && self.bits[bitsOffset] == 0 {
            bitsOffset += 1;
        }
        if bitsOffset == self.bits.len() {
            return None;
        }
        let y = bitsOffset / self.row_size;
        let mut x = (bitsOffset % self.row_size) * 32;

        let theBits = self.bits[bitsOffset];
        let mut bit = 0;
        while (theBits << (31 - bit)) == 0 {
            bit += 1;
        }
        x += bit;
        return Some(vec![x as u32, y as u32]);
    }

    pub fn getBottomRightOnBit(&self) -> Option<Vec<u32>> {
        let mut bitsOffset = self.bits.len() as i64 - 1;
        while bitsOffset >= 0 && self.bits[bitsOffset as usize] == 0 {
            bitsOffset -= 1;
        }
        if bitsOffset < 0 {
            return None;
        }

        let y = bitsOffset as usize / self.row_size;
        let mut x = (bitsOffset as usize % self.row_size) * 32;

        let theBits = self.bits[bitsOffset as usize];
        let mut bit = 31;
        while (theBits >> bit) == 0 {
            bit -= 1;
        }
        x += bit;

        return Some(vec![x as u32, y as u32]);
    }

    /**
     * @return The width of the matrix
     */
    pub fn getWidth(&self) -> u32 {
        return self.width;
    }

    /**
     * @return The height of the matrix
     */
    pub fn getHeight(&self) -> u32 {
        return self.height;
    }

    /**
     * @return The row size of the matrix
     */
    pub fn getRowSize(&self) -> usize {
        return self.row_size;
    }

    // @Override
    // public boolean equals(Object o) {
    //   if (!(o instanceof BitMatrix)) {
    //     return false;
    //   }
    //   BitMatrix other = (BitMatrix) o;
    //   return width == other.width && height == other.height && rowSize == other.rowSize &&
    //   Arrays.equals(bits, other.bits);
    // }

    // @Override
    // public int hashCode() {
    //   int hash = width;
    //   hash = 31 * hash + width;
    //   hash = 31 * hash + height;
    //   hash = 31 * hash + rowSize;
    //   hash = 31 * hash + Arrays.hashCode(bits);
    //   return hash;
    // }

    /**
     * @param setString representation of a set bit
     * @param unsetString representation of an unset bit
     * @return string representation of entire matrix utilizing given strings
     */
    pub fn toString(&self, setString: &str, unsetString: &str) -> String {
        return self.buildToString(setString, unsetString, "\n");
    }

    /**
     * @param setString representation of a set bit
     * @param unsetString representation of an unset bit
     * @param lineSeparator newline character in string representation
     * @return string representation of entire matrix utilizing given strings and line separator
     * @deprecated call {@link #toString(String,String)} only, which uses \n line separator always
     */
    // @Deprecated
    // public String toString(String setString, String unsetString, String lineSeparator) {
    //   return buildToString(setString, unsetString, lineSeparator);
    // }

    fn buildToString(&self, setString: &str, unsetString: &str, lineSeparator: &str) -> String {
        let mut result =
            String::with_capacity((self.height * (self.width + 1)).try_into().unwrap());
        for y in 0..self.height {
            //for (int y = 0; y < height; y++) {
            for x in 0..self.width {
                //for (int x = 0; x < width; x++) {
                result.push_str(if self.get(x, y) {
                    setString
                } else {
                    unsetString
                });
            }
            result.push_str(lineSeparator);
        }
        return result;
    }

    // @Override
    // public BitMatrix clone() {
    //   return new BitMatrix(width, height, rowSize, bits.clone());
    // }
}

impl fmt::Display for BitMatrix {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "{}", self.toString("X ", "  "))
    }
}