1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
//! Χ</sup>2</sup> over x in (0, ∞)
#[cfg(feature = "serde_support")]
use serde_derive::{Deserialize, Serialize};

use crate::impl_display;
use crate::result;
use crate::traits::*;
use getset::Setters;
use rand::distributions;
use rand::Rng;
use special::Gamma as _;
use std::f64::consts::LN_2;

/// [Χ<sup>2</sup> distribution](https://en.wikipedia.org/wiki/Chi-squared_distribution)
/// Χ<sup>2</sup>(k).
///
/// # Example
///
/// ```
/// use rv::prelude::*;
///
/// let x2 = ChiSquared::new(2.0).unwrap();
/// ```
#[derive(Debug, Clone, PartialEq, PartialOrd, Setters)]
#[cfg_attr(feature = "serde_support", derive(Serialize, Deserialize))]
pub struct ChiSquared {
    /// Degrees of freedom in (0, ∞)
    #[set = "pub"]
    k: f64,
}

impl ChiSquared {
    /// Create a new Chi-squared distribution
    ///
    /// # Arguments
    /// - k: Degrees of freedom in (0, ∞)
    pub fn new(k: f64) -> result::Result<Self> {
        if k > 0.0 && k.is_finite() {
            Ok(ChiSquared { k })
        } else {
            let err_kind = result::ErrorKind::InvalidParameterError;
            let msg = "k must be finite and greater than 0";
            let err = result::Error::new(err_kind, msg);
            Err(err)
        }
    }

    /// Create a new ChiSquared wihout checking whether the parameters are
    /// valid.
    pub fn new_unchecked(k: f64) -> Self {
        ChiSquared { k }
    }

    /// Get the degrees of freedom, `k`.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use rv::dist::ChiSquared;
    /// let x2 = ChiSquared::new(1.2).unwrap();
    /// assert_eq!(x2.k(), 1.2);
    /// ```
    pub fn k(&self) -> f64 {
        self.k
    }
}

impl From<&ChiSquared> for String {
    fn from(x2: &ChiSquared) -> String {
        format!("χ²({})", x2.k)
    }
}

impl_display!(ChiSquared);

macro_rules! impl_traits {
    ($kind:ty) => {
        impl Rv<$kind> for ChiSquared {
            fn ln_f(&self, x: &$kind) -> f64 {
                let k2 = self.k / 2.0;
                let xf = f64::from(*x);
                (k2 - 1.0) * xf.ln() - xf / 2.0 - k2 * LN_2 - k2.ln_gamma().0
            }

            fn draw<R: Rng>(&self, rng: &mut R) -> $kind {
                let x2 = distributions::ChiSquared::new(self.k);
                rng.sample(x2) as $kind
            }

            fn sample<R: Rng>(&self, n: usize, rng: &mut R) -> Vec<$kind> {
                let x2 = distributions::ChiSquared::new(self.k);
                (0..n).map(|_| rng.sample(x2) as $kind).collect()
            }
        }

        impl Support<$kind> for ChiSquared {
            fn supports(&self, x: &$kind) -> bool {
                *x > 0.0 && x.is_finite()
            }
        }

        impl ContinuousDistr<$kind> for ChiSquared {}

        impl Mean<$kind> for ChiSquared {
            fn mean(&self) -> Option<$kind> {
                Some(self.k as $kind)
            }
        }

        impl Mode<$kind> for ChiSquared {
            fn mode(&self) -> Option<$kind> {
                Some(0.0f64.max(self.k - 2.0) as $kind)
            }
        }

        impl Variance<$kind> for ChiSquared {
            fn variance(&self) -> Option<$kind> {
                Some((self.k * 2.0) as $kind)
            }
        }

        impl Cdf<$kind> for ChiSquared {
            fn cdf(&self, x: &$kind) -> f64 {
                (f64::from(*x) / 2.0).inc_gamma(self.k / 2.0)
            }
        }
    };
}

impl Skewness for ChiSquared {
    fn skewness(&self) -> Option<f64> {
        Some((8.0 / self.k).sqrt())
    }
}

impl Kurtosis for ChiSquared {
    fn kurtosis(&self) -> Option<f64> {
        Some(12.0 / self.k)
    }
}

impl_traits!(f64);
impl_traits!(f32);

#[cfg(test)]
mod tests {
    use super::*;
    use crate::misc::ks_test;
    use std::f64;

    const TOL: f64 = 1E-12;
    const KS_PVAL: f64 = 0.2;
    const N_TRIES: usize = 5;

    #[test]
    fn new() {
        let x2 = ChiSquared::new(3.2).unwrap();
        assert::close(x2.k, 3.2, TOL);
    }

    #[test]
    fn new_should_reject_k_leq_zero() {
        assert!(ChiSquared::new(f64::MIN_POSITIVE).is_ok());
        assert!(ChiSquared::new(0.0).is_err());
        assert!(ChiSquared::new(-f64::MIN_POSITIVE).is_err());
        assert!(ChiSquared::new(-1.0).is_err());
    }

    #[test]
    fn new_should_reject_non_finite_k() {
        assert!(ChiSquared::new(f64::INFINITY).is_err());
        assert!(ChiSquared::new(-f64::NAN).is_err());
        assert!(ChiSquared::new(f64::NEG_INFINITY).is_err());
    }

    #[test]
    fn ln_pdf() {
        let x2 = ChiSquared::new(2.5).unwrap();
        assert::close(x2.ln_pdf(&1.2_f64), -1.32258175007963, TOL);
        assert::close(x2.ln_pdf(&3.4_f64), -2.1622182813725894, TOL);
    }

    #[test]
    fn cdf() {
        let x2 = ChiSquared::new(2.5).unwrap();
        assert::close(x2.cdf(&1.2_f64), 0.33859384379982849, TOL);
        assert::close(x2.cdf(&3.4_f64), 0.74430510487063328, TOL);
    }

    #[test]
    fn mean() {
        let m: f64 = ChiSquared::new(2.5).unwrap().mean().unwrap();
        assert::close(m, 2.5, TOL);
    }

    #[test]
    fn variance() {
        let v: f64 = ChiSquared::new(2.5).unwrap().variance().unwrap();
        assert::close(v, 5.0, TOL);
    }

    #[test]
    fn kurtosis() {
        let k = ChiSquared::new(2.5).unwrap().kurtosis().unwrap();
        assert::close(k, 4.8, TOL);
    }

    #[test]
    fn skewness() {
        let s = ChiSquared::new(2.5).unwrap().skewness().unwrap();
        assert::close(s, 1.7888543819998317, TOL);
    }

    #[test]
    fn draw_test() {
        let mut rng = rand::thread_rng();
        let x2 = ChiSquared::new(2.5).unwrap();
        let cdf = |x: f64| x2.cdf(&x);

        // test is flaky, try a few times
        let passes = (0..N_TRIES).fold(0, |acc, _| {
            let xs: Vec<f64> = x2.sample(1000, &mut rng);
            let (_, p) = ks_test(&xs, cdf);
            if p > KS_PVAL {
                acc + 1
            } else {
                acc
            }
        });
        assert!(passes > 0);
    }
}