1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
extern crate nalgebra;
extern crate rand;

use self::nalgebra::{DMatrix, DVector};
use self::rand::Rng;
use dist::MvGaussian;
use misc::lnmv_gamma;
use std::f64::consts::LN_2;
use std::io;
use traits::*;

/// [Inverse Wishart distribution](https://en.wikipedia.org/wiki/Inverse-Wishart_distribution),
/// W<sup>-1</sup>(**Ψ**,ν) over positive definite matrices.
#[derive(Debug, Clone)]
#[cfg_attr(feature = "serde_support", derive(Serialize, Deserialize))]
pub struct InvWishart {
    /// p-dimensional inverse scale matrix, **Ψ**
    pub inv_scale: DMatrix<f64>,
    // Degrees of freedom, ν > p - 1
    pub df: usize,
}

impl InvWishart {
    /// Create an Inverse Wishart distribution, W<sup>-1</sup>(**Ψ**,ν) with
    /// p-by-p inverse scale matrix, **Ψ**, and degrees of freedom, ν > p - 1.
    pub fn new(inv_scale: DMatrix<f64>, df: usize) -> io::Result<Self> {
        let err: Option<&str> = if !inv_scale.is_square() {
            Some("scale matrix not square")
        } else if (df as usize) < inv_scale.nrows() {
            Some("df too low, must be >= ndims")
        } else if inv_scale.clone().cholesky().is_none() {
            // TODO: no clone
            Some("scale matrix not positive definite")
        } else {
            None
        };

        match err {
            Some(msg) => Err(io::Error::new(io::ErrorKind::InvalidInput, msg)),
            None => Ok(InvWishart { inv_scale, df }),
        }
    }

    /// Create an Inverse Wishart distribution, W<sup>-1</sup>(**I**<sup>p</sup>,
    /// p)
    pub fn identity(dims: usize) -> Self {
        InvWishart {
            inv_scale: DMatrix::identity(dims, dims),
            df: dims,
        }
    }
}

impl Rv<DMatrix<f64>> for InvWishart {
    fn ln_f(&self, x: &DMatrix<f64>) -> f64 {
        let p = self.inv_scale.nrows();
        let pf = p as f64;
        let v = self.df as f64;

        let det_s: f64 = v * 0.5 * self.inv_scale.determinant().ln();
        let det_x: f64 = -(v + pf + 1.0) * 0.5 * x.determinant().ln();

        let denom: f64 = v * pf * 0.5 * LN_2 + lnmv_gamma(p, 0.5 * v);
        let numer: f64 =
            -0.5 * (&self.inv_scale * x.clone().try_inverse().unwrap()).trace();

        det_s - denom + det_x + numer
    }

    #[inline]
    fn ln_normalizer() -> f64 {
        0.0
    }

    // XXX: The complexity of this is O(df * dims^2). There is a O(dims^2)
    // algorithm, but it's more complicated to implement, so standby.
    // See https://www.math.wustl.edu/~sawyer/hmhandouts/Wishart.pdf  for more
    fn draw<R: Rng>(&self, mut rng: &mut R) -> DMatrix<f64> {
        let p = self.inv_scale.nrows();
        let scale = self.inv_scale.clone().try_inverse().unwrap();
        let mvg = MvGaussian::new(DVector::zeros(p), scale).unwrap();
        let xs = mvg.sample(self.df, &mut rng);
        let y = xs.iter().fold(DMatrix::<f64>::zeros(p, p), |acc, x| {
            acc + x * x.transpose()
        });
        y.try_inverse().unwrap()
    }

    fn sample<R: Rng>(&self, n: usize, mut rng: &mut R) -> Vec<DMatrix<f64>> {
        let p = self.inv_scale.nrows();
        let scale = self.inv_scale.clone().try_inverse().unwrap();
        let mvg = MvGaussian::new(DVector::zeros(p), scale).unwrap();
        (0..n)
            .map(|_| {
                let xs = mvg.sample(self.df, &mut rng);
                let y =
                    xs.iter().fold(DMatrix::<f64>::zeros(p, p), |acc, x| {
                        acc + x * x.transpose()
                    });
                y.try_inverse().unwrap()
            }).collect()
    }
}

impl Support<DMatrix<f64>> for InvWishart {
    fn contains(&self, x: &DMatrix<f64>) -> bool {
        x.clone().cholesky().is_some()
    }
}

impl ContinuousDistr<DMatrix<f64>> for InvWishart {}

impl Mean<DMatrix<f64>> for InvWishart {
    fn mean(&self) -> Option<DMatrix<f64>> {
        let p = self.inv_scale.nrows();
        if self.df > p + 1 {
            Some(&self.inv_scale / (self.df - p - 1) as f64)
        } else {
            None
        }
    }
}

impl Mode<DMatrix<f64>> for InvWishart {
    fn mode(&self) -> Option<DMatrix<f64>> {
        let p = self.inv_scale.nrows();
        Some(&self.inv_scale / (self.df + p + 1) as f64)
    }
}

#[cfg(test)]
mod tests {
    extern crate assert;
    extern crate test;
    use super::*;

    const TOL: f64 = 1E-12;

    #[test]
    fn new_should_reject_df_too_low() {
        let inv_scale = DMatrix::identity(4, 4);
        assert!(InvWishart::new(inv_scale.clone(), 4).is_ok());
        assert!(InvWishart::new(inv_scale.clone(), 5).is_ok());
        match InvWishart::new(inv_scale.clone(), 3) {
            Err(err) => {
                let msg = err.get_ref().unwrap().description();
                assert!(msg.contains("df too low"));
            }
            Ok(..) => panic!("Should've failed"),
        }
    }

    #[test]
    fn new_should_reject_non_square_scale() {
        let inv_scale = DMatrix::identity(4, 3);
        match InvWishart::new(inv_scale, 5) {
            Err(err) => {
                let msg = err.get_ref().unwrap().description();
                assert!(msg.contains("square"));
            }
            Ok(..) => panic!("Should've failed"),
        }
    }

    #[test]
    fn ln_f_standard_ident() {
        let iw = InvWishart::identity(4);
        let x = DMatrix::<f64>::identity(4, 4);
        assert::close(iw.ln_f(&x), -11.430949807317218, TOL)
    }

    #[test]
    fn ln_f_standard_mode() {
        let iw = InvWishart::identity(4);
        let x = DMatrix::<f64>::identity(4, 4) / 9.0;
        assert::close(iw.ln_f(&x), 12.11909258473473, TOL)
    }

    #[test]
    fn ln_f_nonstandard_ident() {
        let slice = vec![
            1.10576891,
            -0.20160336,
            0.09378834,
            -0.19339029,
            -0.20160336,
            0.66794786,
            -0.46020905,
            -0.62806951,
            0.09378834,
            -0.46020905,
            1.15263284,
            0.98443641,
            -0.19339029,
            -0.62806951,
            0.98443641,
            1.21050189,
        ];
        let inv_scale: DMatrix<f64> = DMatrix::from_row_slice(4, 4, &slice);
        let iw = InvWishart::new(inv_scale, 5).unwrap();
        let x = DMatrix::<f64>::identity(4, 4);
        assert::close(iw.ln_f(&x), -18.939673925150899, TOL)
    }

    #[test]
    fn draws_should_be_positive_definite() {
        let mut rng = rand::thread_rng();
        let slice = vec![
            1.10576891,
            -0.20160336,
            0.09378834,
            -0.19339029,
            -0.20160336,
            0.66794786,
            -0.46020905,
            -0.62806951,
            0.09378834,
            -0.46020905,
            1.15263284,
            0.98443641,
            -0.19339029,
            -0.62806951,
            0.98443641,
            1.21050189,
        ];
        let inv_scale: DMatrix<f64> = DMatrix::from_row_slice(4, 4, &slice);
        let iw = InvWishart::new(inv_scale, 5).unwrap();
        for x in iw.sample(100, &mut rng) {
            assert!(x.cholesky().is_some());
        }
    }

    // XXX: I've been using scipy distributionst to check my answers, but it
    // turns out that this case exposes a bug in the scipy implementation, see
    // https://github.com/scipy/scipy/issues/8844. I've tested the
    // individual terms by hand and everything looks right, so I put the
    // rust-computed value (-6.187876016819759) as the target until scipy
    // pushes the corrected code to PyPi.
    #[test]
    fn ln_f_nonstandard_mode() {
        let slice = vec![
            1.10576891,
            -0.20160336,
            0.09378834,
            -0.19339029,
            -0.20160336,
            0.66794786,
            -0.46020905,
            -0.62806951,
            0.09378834,
            -0.46020905,
            1.15263284,
            0.98443641,
            -0.19339029,
            -0.62806951,
            0.98443641,
            1.21050189,
        ];
        let inv_scale: DMatrix<f64> = DMatrix::from_row_slice(4, 4, &slice);
        let x = inv_scale.clone();
        let iw = InvWishart::new(inv_scale, 5).unwrap();
        assert::close(iw.ln_f(&x), -6.187876016819759, TOL)
    }

    #[bench]
    fn bench_draw(b: &mut test::Bencher) {
        let mut rng = rand::thread_rng();
        let iw = InvWishart::identity(10);
        b.iter(|| iw.draw(&mut rng));
    }

    #[bench]
    fn bench_ln_f(b: &mut test::Bencher) {
        let iw = InvWishart::identity(10);
        let x = DMatrix::<f64>::identity(10, 10);
        b.iter(|| iw.ln_f(&x));
    }
}