1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
use std::collections::BTreeMap;
use std::f64::consts::LN_2;
use special::Gamma as SGamma;
use crate::consts::*;
use crate::data::{
extract_stat, extract_stat_then, DataOrSuffStat, GaussianSuffStat,
};
use crate::dist::{Gaussian, NormalGamma};
use crate::gaussian_prior_geweke_testable;
use crate::test::GewekeTestable;
use crate::traits::*;
#[inline]
fn ln_z(r: f64, s: f64, v: f64) -> f64 {
let half_v = 0.5 * v;
(half_v + 0.5).mul_add(LN_2, HALF_LN_PI)
- 0.5_f64.mul_add(r.ln(), half_v.mul_add(s.ln(), -half_v.ln_gamma().0))
}
fn posterior_from_stat(
ng: &NormalGamma,
stat: &GaussianSuffStat,
) -> NormalGamma {
let nf = stat.n() as f64;
let r = ng.r() + nf;
let v = ng.v() + nf;
let m = ng.m().mul_add(ng.r(), stat.sum_x()) / r;
let s =
ng.s() + stat.sum_x_sq() + ng.r().mul_add(ng.m() * ng.m(), -r * m * m);
NormalGamma::new(m, r, s, v).expect("Invalid posterior params.")
}
impl ConjugatePrior<f64, Gaussian> for NormalGamma {
type Posterior = Self;
type LnMCache = f64;
type LnPpCache = (GaussianSuffStat, f64);
fn posterior(&self, x: &DataOrSuffStat<f64, Gaussian>) -> Self {
extract_stat_then(x, GaussianSuffStat::new, |stat: GaussianSuffStat| {
posterior_from_stat(self, &stat)
})
}
#[inline]
fn ln_m_cache(&self) -> Self::LnMCache {
ln_z(self.r(), self.s, self.v)
}
fn ln_m_with_cache(
&self,
cache: &Self::LnMCache,
x: &DataOrSuffStat<f64, Gaussian>,
) -> f64 {
extract_stat_then(x, GaussianSuffStat::new, |stat: GaussianSuffStat| {
let post = posterior_from_stat(self, &stat);
let lnz_n = ln_z(post.r, post.s, post.v);
(-(stat.n() as f64)).mul_add(HALF_LN_2PI, lnz_n) - cache
})
}
#[inline]
fn ln_pp_cache(
&self,
x: &DataOrSuffStat<f64, Gaussian>,
) -> Self::LnPpCache {
let stat = extract_stat(x, GaussianSuffStat::new);
let post_n = posterior_from_stat(self, &stat);
let lnz_n = ln_z(post_n.r, post_n.s, post_n.v);
(stat, lnz_n)
}
fn ln_pp_with_cache(&self, cache: &Self::LnPpCache, y: &f64) -> f64 {
let mut stat = cache.0.clone();
let lnz_n = cache.1;
stat.observe(y);
let post_m = posterior_from_stat(self, &stat);
let lnz_m = ln_z(post_m.r(), post_m.s(), post_m.v());
-HALF_LN_2PI + lnz_m - lnz_n
}
}
gaussian_prior_geweke_testable!(NormalGamma, Gaussian);
#[cfg(test)]
mod tests {
use super::*;
use crate::data::GaussianData;
const TOL: f64 = 1E-12;
#[test]
fn geweke() {
use crate::test::GewekeTester;
let mut rng = rand::thread_rng();
let pr = NormalGamma::new(0.1, 1.2, 0.5, 1.8).unwrap();
let n_passes = (0..5)
.map(|_| {
let mut tester = GewekeTester::new(pr.clone(), 20);
tester.run_chains(5_000, 20, &mut rng);
u8::from(tester.eval(0.025).is_ok())
})
.sum::<u8>();
assert!(n_passes > 1);
}
#[test]
fn ln_z_all_ones() {
let z = ln_z(1.0, 1.0, 1.0);
assert::close(z, 1.837_877_066_409_35, TOL);
}
#[test]
fn ln_z_not_all_ones() {
let z = ln_z(1.2, 0.4, 5.2);
assert::close(z, 5.369_728_190_685_34, TOL);
}
#[test]
fn ln_marginal_likelihood_vec_data() {
let ng = NormalGamma::new(2.1, 1.2, 1.3, 1.4).unwrap();
let data: Vec<f64> = vec![1.0, 2.0, 3.0, 4.0];
let x = GaussianData::<f64>::Data(&data);
let m = ng.ln_m(&x);
assert::close(m, -7.697_070_183_440_38, TOL);
}
#[test]
fn ln_marginal_likelihood_suffstat() {
let ng = NormalGamma::new(2.1, 1.2, 1.3, 1.4).unwrap();
let mut stat = GaussianSuffStat::new();
stat.observe(&1.0);
stat.observe(&2.0);
stat.observe(&3.0);
stat.observe(&4.0);
let x = GaussianData::<f64>::SuffStat(&stat);
let m = ng.ln_m(&x);
assert::close(m, -7.697_070_183_440_38, TOL);
}
#[test]
fn ln_marginal_likelihood_suffstat_forgotten() {
let ng = NormalGamma::new(2.1, 1.2, 1.3, 1.4).unwrap();
let mut stat = GaussianSuffStat::new();
stat.observe(&1.0);
stat.observe(&2.0);
stat.observe(&3.0);
stat.observe(&4.0);
stat.observe(&5.0);
stat.forget(&5.0);
let x = GaussianData::<f64>::SuffStat(&stat);
let m = ng.ln_m(&x);
assert::close(m, -7.697_070_183_440_38, TOL);
}
#[test]
fn posterior_predictive_positive_value() {
let ng = NormalGamma::new(2.1, 1.2, 1.3, 1.4).unwrap();
let data: Vec<f64> = vec![1.0, 2.0, 3.0, 4.0];
let x = GaussianData::<f64>::Data(&data);
let pp = ng.ln_pp(&3.0, &x);
assert::close(pp, -1.284_386_384_996_11, TOL);
}
#[test]
fn posterior_predictive_negative_value() {
let ng = NormalGamma::new(2.1, 1.2, 1.3, 1.4).unwrap();
let data: Vec<f64> = vec![1.0, 2.0, 3.0, 4.0];
let x = GaussianData::<f64>::Data(&data);
let pp = ng.ln_pp(&-3.0, &x);
assert::close(pp, -6.163_769_886_218_6, TOL);
}
#[test]
fn ln_m_vs_monte_carlo() {
use crate::misc::logsumexp;
let n_samples = 2_000_000;
let xs = vec![1.0, 2.0, 3.0, 4.0, 5.0, 6.0];
let (m, r, s, v) = (0.0, 1.2, 2.3, 3.4);
let ng = NormalGamma::new(m, r, s, v).unwrap();
let ln_m = ng.ln_m(&DataOrSuffStat::<f64, Gaussian>::from(&xs));
let mc_est = {
let ln_fs: Vec<f64> = ng
.sample_stream(&mut rand::thread_rng())
.take(n_samples)
.map(|gauss: Gaussian| {
xs.iter().map(|x| gauss.ln_f(x)).sum::<f64>()
})
.collect();
logsumexp(&ln_fs) - (n_samples as f64).ln()
};
assert::close(ln_m, mc_est, 1e-2);
}
#[test]
fn ln_m_vs_importance() {
use crate::misc::logsumexp;
let n_samples = 2_000_000;
let xs = vec![1.0, 2.0, 3.0, 4.0, 5.0, 6.0];
let (m, r, s, v) = (1.0, 2.2, 3.3, 4.4);
let ng = NormalGamma::new(m, r, s, v).unwrap();
let ln_m = ng.ln_m(&DataOrSuffStat::<f64, Gaussian>::from(&xs));
let post = ng.posterior(&DataOrSuffStat::<f64, Gaussian>::from(&xs));
let mc_est = {
let mut rng = rand::thread_rng();
let ln_fs: Vec<f64> = (0..n_samples)
.map(|_| {
let gauss: Gaussian = post.draw(&mut rng);
let ln_f = xs.iter().map(|x| gauss.ln_f(x)).sum::<f64>();
ln_f + ng.ln_f(&gauss) - post.ln_f(&gauss)
})
.collect();
logsumexp(&ln_fs) - (n_samples as f64).ln()
};
assert::close(ln_m, mc_est, 1e-2);
}
}