1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
#[cfg(test)]
use approx::RelativeEq;

use crate::traits::Rv;
use std::collections::BTreeMap;

// tests that Clone, Debug, and PartialEq are implemented for a distribution
// Tests that partial eq is not sensitive to OnceCell initialization, which
// often happens in ln_f is called
#[macro_export]
macro_rules! test_basic_impls {
    ([continuous] $fx: expr) => {
        test_basic_impls!($fx, 0.5_f64);
    };
    ([categorical] $fx: expr) => {
        test_basic_impls!($fx, 0_usize);
    };
    ([count] $fx: expr) => {
        test_basic_impls!($fx, 3_u32);
    };
    ([binary] $fx: expr) => {
        test_basic_impls!($fx, true);
    };
    ($fx: expr, $x: expr) => {
        #[test]
        fn should_impl_debug_clone_and_partialeq() {
            // make the expression a thing. If we don't do this, calling $fx
            // reconstructs the distribution which means we don't do caching
            let fx = $fx;

            // clone a copy of fn before any computation of cached values is
            // done
            let fx2 = fx.clone();
            assert_eq!($fx, fx2);

            // Computing ln_f normally initializes all cached values
            let y1 = fx.ln_f(&$x);
            let y2 = fx.ln_f(&$x);
            assert!((y1 - y2).abs() < std::f64::EPSILON);

            // check the fx == fx2 despite fx having its cached values initalized
            assert_eq!(fx2, fx);

            // Make sure Debug is implemented for fx
            let _s1 = format!("{:?}", fx);
        }
    };
}

#[cfg(test)]
#[allow(dead_code)]
/// Assert Relative Eq for sequences
pub fn relative_eq<T, I>(
    left: I,
    right: I,
    epsilon: T::Epsilon,
    max_relative: T::Epsilon,
) -> bool
where
    T: RelativeEq,
    T::Epsilon: Copy,
    I: IntoIterator<Item = T>,
    <I as IntoIterator>::IntoIter: ExactSizeIterator,
{
    let a = left.into_iter();
    let b = right.into_iter();

    if a.len() != b.len() {
        return false;
    }

    a.zip(b)
        .all(|(a, b)| a.relative_eq(&b, epsilon, max_relative))
}

pub trait GewekeTestable<Fx, X> {
    fn prior_draw<R: rand::Rng>(&self, rng: &mut R) -> Fx;
    fn update_params<R: rand::Rng>(&self, data: &[X], rng: &mut R) -> Fx;
    fn geweke_stats(&self, fx: &Fx, xs: &[X]) -> BTreeMap<String, f64>;
}

pub struct GewekeTester<Pr, Fx, X>
where
    Pr: GewekeTestable<Fx, X>,
    Pr: Rv<Fx>,
    Fx: Rv<X>,
{
    pub pr: Pr,
    pub nx: usize,
    pub xs: Vec<X>,
    pub prior_chain_stats: BTreeMap<String, Vec<f64>>,
    pub posterior_chain_stats: BTreeMap<String, Vec<f64>>,
    _phantom: std::marker::PhantomData<Fx>,
}

fn append_stats(
    n: usize,
    src: &BTreeMap<String, f64>,
    sink: &mut BTreeMap<String, Vec<f64>>,
) {
    if sink.is_empty() {
        for k in src.keys() {
            sink.insert(k.clone(), Vec::with_capacity(n));
        }
    }

    for (k, v) in src.iter() {
        sink.get_mut(k)
            .map(|vals| vals.push(*v))
            .expect("failed to push")
    }
}

impl<Pr, Fx, X> GewekeTester<Pr, Fx, X>
where
    Pr: GewekeTestable<Fx, X>,
    Pr: Rv<Fx>,
    Fx: Rv<X>,
{
    pub fn new(pr: Pr, nx: usize) -> Self {
        GewekeTester {
            pr,
            nx,
            xs: Vec::new(),
            prior_chain_stats: BTreeMap::new(),
            posterior_chain_stats: BTreeMap::new(),
            _phantom: std::marker::PhantomData,
        }
    }

    pub fn eval(&self, max_err: f64) -> Result<(), String> {
        let errors = self.errs();
        errors.iter().try_for_each(|(name, err)| {
            if *err > max_err {
                Err(format!(
                    "P-P Error {} ({}) exceeds max ({})",
                    name, err, max_err
                ))
            } else {
                Ok(())
            }
        })
    }

    /// Two-tailed test on prior and posterior stats
    pub fn errs(&self) -> Vec<(String, f64)> {
        use crate::dist::Empirical;
        let mut errors: Vec<(String, f64)> = Vec::new();
        for (stat_name, prior_stats) in self.prior_chain_stats.iter() {
            let post_stats = &self.posterior_chain_stats[stat_name];
            let emp_prior = Empirical::new(prior_stats.clone());
            let emp_post = Empirical::new(post_stats.clone());
            let err = emp_prior.err(&emp_post);
            errors.push((stat_name.clone(), err));
        }
        errors
    }

    pub fn run_chains<R: rand::Rng>(
        &mut self,
        n: usize,
        thinning: usize,
        rng: &mut R,
    ) {
        self.run_prior_chain(n, rng);
        self.run_posterior_chain(n, thinning, rng);
    }

    pub fn run_prior_chain<R: rand::Rng>(&mut self, n: usize, rng: &mut R) {
        (0..n).for_each(|_| {
            let fx = self.pr.prior_draw(rng);
            let xs: Vec<X> = fx.sample(self.nx, rng);
            let stats = self.pr.geweke_stats(&fx, &xs);

            append_stats(n, &stats, &mut self.prior_chain_stats)
        })
    }

    pub fn run_posterior_chain<R: rand::Rng>(
        &mut self,
        n: usize,
        thinning: usize,
        rng: &mut R,
    ) {
        let mut fx = self.pr.prior_draw(rng);
        let mut xs = fx.sample(self.nx, rng);
        (0..n).for_each(|_| {
            (0..thinning).for_each(|_| {
                fx = self.pr.update_params(&xs, rng);
                xs = fx.sample(self.nx, rng);
            });

            let stats = self.pr.geweke_stats(&fx, &xs);

            append_stats(n, &stats, &mut self.posterior_chain_stats)
        })
    }
}

#[macro_export]
macro_rules! gaussian_prior_geweke_testable {
    ($prior: ty, $fx: ty) => {
        impl GewekeTestable<Gaussian, f64> for $prior {
            fn prior_draw<R: rand::Rng>(&self, rng: &mut R) -> Gaussian {
                self.draw(rng)
            }

            fn update_params<R: rand::Rng>(
                &self,
                data: &[f64],
                rng: &mut R,
            ) -> Gaussian {
                let post = <$prior as ConjugatePrior<f64, $fx>>::posterior(
                    &self,
                    &DataOrSuffStat::from(data),
                );
                post.draw(rng)
            }

            fn geweke_stats(
                &self,
                fx: &Gaussian,
                xs: &[f64],
            ) -> BTreeMap<String, f64> {
                let mut stats: BTreeMap<String, f64> = BTreeMap::new();

                stats.insert(String::from("mu"), fx.mu());
                stats.insert(String::from("sigma"), fx.sigma());

                let mean = xs.iter().map(|&x| x).sum::<f64>() / xs.len() as f64;
                let mse = xs
                    .iter()
                    .map(|&x| {
                        let err = (x - mean);
                        err * err
                    })
                    .sum::<f64>()
                    / xs.len() as f64;

                stats.insert(String::from("x_mean"), mean);
                stats.insert(String::from("x_mse"), mse);

                stats
            }
        }
    };
}