ruvector-postgres 2.0.1

High-performance PostgreSQL vector database extension v2 - pgvector drop-in replacement with 230+ SQL functions, SIMD acceleration, Flash Attention, GNN layers, hybrid search, multi-tenancy, self-healing, and self-learning capabilities
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
# RuVector-Postgres

[![Crates.io](https://img.shields.io/crates/v/ruvector-postgres.svg)](https://crates.io/crates/ruvector-postgres)
[![Documentation](https://docs.rs/ruvector-postgres/badge.svg)](https://docs.rs/ruvector-postgres)
[![License: MIT](https://img.shields.io/badge/License-MIT-blue.svg)](https://opensource.org/licenses/MIT)
[![PostgreSQL](https://img.shields.io/badge/PostgreSQL-14--17-blue.svg)](https://www.postgresql.org/)
[![Docker](https://img.shields.io/badge/Docker-available-blue.svg)](https://hub.docker.com/r/ruvnet/ruvector-postgres)
[![npm](https://img.shields.io/npm/v/@ruvector/core.svg)](https://www.npmjs.com/package/@ruvector/core)
[![Security](https://img.shields.io/badge/Security-Audited-green.svg)](docs/SECURITY_AUDIT_REPORT.md)

**The most advanced PostgreSQL vector database extension.** A drop-in pgvector replacement with **290+ SQL functions**, SIMD acceleration, 39 attention mechanisms, GNN layers, hyperbolic embeddings, mincut-gated transformers, hybrid search, multi-tenancy, self-healing, and self-learning capabilities.

## v2.0.0 Highlights (December 2025)

- **Mincut-Gated Transformers**: Ultra-low-latency inference with coherence control via λ signals
- **Hybrid Search**: Vector + BM25 fusion with RRF and linear blending
- **Multi-Tenancy**: Row-level security with automatic tenant isolation
- **Self-Healing**: Automated index repair with integrity validation
- **Integrity Control**: Stoer-Wagner mincut-based quality assurance
- **IVFFlat Index**: Full inverted list storage with proper page management
- **HNSW Index**: Fixed query execution with heap scan integration
- **Security Audit**: 3 critical SQL injection vulnerabilities fixed
- **GNN Module**: Complete Graph Neural Network operators

## Why RuVector?

| Feature | pgvector | RuVector-Postgres |
|---------|----------|-------------------|
| Vector Search | HNSW, IVFFlat | HNSW, IVFFlat (optimized) |
| Distance Metrics | 3 | 8+ (including hyperbolic) |
| **Local Embeddings** | - | **6 models (fastembed)** |
| **Attention Mechanisms** | - | **39 types** |
| **Gated Transformers** | - | **Mincut-coherence control** |
| **Hybrid Search** | - | **RRF + Linear fusion** |
| **Graph Neural Networks** | - | **GCN, GraphSAGE, GAT** |
| **Hyperbolic Embeddings** | - | **Poincare, Lorentz** |
| **Sparse Vectors / BM25** | Partial | **Full support** |
| **Multi-Tenancy** | - | **Row-level isolation** |
| **Self-Healing** | - | **Auto index repair** |
| **Integrity Control** | - | **Stoer-Wagner mincut** |
| **Self-Learning** | - | **ReasoningBank** |
| **Neural DAG Learning** | - | **59 SQL functions** |
| **Agent Routing** | - | **Tiny Dancer** |
| **Graph/Cypher** | - | **Full support** |
| **SPARQL/RDF** | - | **W3C SPARQL 1.1** |
| AVX-512/NEON SIMD | Partial | **Full** |
| Quantization | No | **Scalar, Product, Binary** |

## Installation

### Docker (Recommended)

```bash
# Start the container
docker run -d --name ruvector-pg \
  -e POSTGRES_PASSWORD=secret \
  -p 5432:5432 \
  ruvnet/ruvector-postgres:latest

# Connect with psql
PGPASSWORD=secret psql -h localhost -p 5432 -U postgres

# Or use the ruvector app user (created automatically)
PGPASSWORD=ruvector psql -h localhost -p 5432 -U ruvector -d postgres
```

The container initializes with:
- Extension `ruvector` pre-installed and tested
- User `ruvector` with password `ruvector` for application use
- SIMD acceleration (AVX2/AVX-512) auto-detected

### npm (Node.js Bindings)

```bash
# Install the core package with native bindings
npm install @ruvector/core

# Or install the full ruvector package
npm install ruvector
```

```javascript
const { VectorDB, cosineDistance } = require('@ruvector/core');

// Create a vector database
const db = new VectorDB({ dimensions: 384 });

// Add vectors
db.add([0.1, 0.2, 0.3, ...]);

// Search
const results = db.search(queryVector, { k: 10 });
```

### From Source

```bash
# Install pgrx
cargo install cargo-pgrx --version "0.12.9" --locked
cargo pgrx init --pg16 $(which pg_config)

# Build and install
cd crates/ruvector-postgres
cargo pgrx install --release
```

### CLI Tool

```bash
npm install -g @ruvector/postgres-cli
ruvector-pg -c "postgresql://localhost:5432/mydb" install
```

## Quick Start

```sql
-- Create the extension
CREATE EXTENSION ruvector;

-- Create a table with vector column
CREATE TABLE documents (
    id SERIAL PRIMARY KEY,
    content TEXT,
    embedding ruvector(1536)
);

-- Create an HNSW index
CREATE INDEX ON documents USING ruhnsw (embedding ruvector_l2_ops);

-- Find similar documents
SELECT content, embedding <-> '[0.15, 0.25, ...]'::ruvector AS distance
FROM documents
ORDER BY distance
LIMIT 10;
```

## 290+ SQL Functions

RuVector exposes all advanced AI capabilities as native PostgreSQL functions.

### Core Vector Operations

```sql
-- Distance metrics
SELECT ruvector_cosine_distance(a, b);
SELECT ruvector_l2_distance(a, b);
SELECT ruvector_inner_product(a, b);
SELECT ruvector_manhattan_distance(a, b);

-- Vector operations
SELECT ruvector_normalize(embedding);
SELECT ruvector_add(a, b);
SELECT ruvector_scalar_mul(embedding, 2.0);
```

### Hyperbolic Geometry (8 functions)

Perfect for hierarchical data like taxonomies, knowledge graphs, and org charts.

```sql
-- Poincare ball model
SELECT ruvector_poincare_distance(a, b, -1.0);  -- curvature -1

-- Lorentz hyperboloid model
SELECT ruvector_lorentz_distance(a, b, -1.0);

-- Hyperbolic operations
SELECT ruvector_mobius_add(a, b, -1.0);       -- Hyperbolic translation
SELECT ruvector_exp_map(base, tangent, -1.0); -- Tangent to manifold
SELECT ruvector_log_map(base, target, -1.0);  -- Manifold to tangent

-- Model conversion
SELECT ruvector_poincare_to_lorentz(poincare_vec, -1.0);
SELECT ruvector_lorentz_to_poincare(lorentz_vec, -1.0);

-- Minkowski inner product
SELECT ruvector_minkowski_dot(a, b);
```

### Sparse Vectors & BM25 (14 functions)

Full sparse vector support with text scoring.

```sql
-- Create sparse vectors
SELECT ruvector_sparse_create(ARRAY[0, 5, 10], ARRAY[0.5, 0.3, 0.2], 100);
SELECT ruvector_sparse_from_dense(dense_vector, 0.01);  -- threshold

-- Sparse operations
SELECT ruvector_sparse_dot(a, b);
SELECT ruvector_sparse_cosine(a, b);
SELECT ruvector_sparse_l2_distance(a, b);
SELECT ruvector_sparse_add(a, b);
SELECT ruvector_sparse_scale(vec, 2.0);
SELECT ruvector_sparse_normalize(vec);
SELECT ruvector_sparse_topk(vec, 10);  -- Top-k elements

-- Text scoring
SELECT ruvector_bm25_score(query_terms, doc_freqs, doc_len, avg_doc_len, total_docs);
SELECT ruvector_tf_idf(term_freq, doc_freq, total_docs);
```

### 39 Attention Mechanisms

Full transformer-style attention in PostgreSQL.

```sql
-- Scaled dot-product attention
SELECT ruvector_attention_scaled_dot(query, keys, values);

-- Multi-head attention
SELECT ruvector_attention_multi_head(query, keys, values, num_heads);

-- Flash attention (memory efficient)
SELECT ruvector_attention_flash(query, keys, values, block_size);

-- Sparse attention patterns
SELECT ruvector_attention_sparse(query, keys, values, sparsity_pattern);

-- Linear attention (O(n) complexity)
SELECT ruvector_attention_linear(query, keys, values);

-- Causal/masked attention
SELECT ruvector_attention_causal(query, keys, values);

-- Cross attention
SELECT ruvector_attention_cross(query, context_keys, context_values);

-- Self attention
SELECT ruvector_attention_self(input, num_heads);
```

### Graph Neural Networks (5 functions)

GNN layers for graph-structured data.

```sql
-- GCN (Graph Convolutional Network)
SELECT ruvector_gnn_gcn_layer(features, adjacency, weights);

-- GraphSAGE (inductive learning)
SELECT ruvector_gnn_graphsage_layer(features, neighbor_features, weights);

-- GAT (Graph Attention Network)
SELECT ruvector_gnn_gat_layer(features, adjacency, attention_weights);

-- Message passing
SELECT ruvector_gnn_message_pass(node_features, edge_index, edge_weights);

-- Aggregation
SELECT ruvector_gnn_aggregate(messages, aggregation_type);  -- mean, max, sum
```

### Agent Routing - Tiny Dancer (11 functions)

Intelligent query routing to specialized AI agents.

```sql
-- Route query to best agent
SELECT ruvector_route_query(query_embedding, agent_registry);

-- Route with context
SELECT ruvector_route_with_context(query, context, agents);

-- Multi-agent routing
SELECT ruvector_multi_agent_route(query, agents, top_k);

-- Agent management
SELECT ruvector_register_agent(name, capabilities, embedding);
SELECT ruvector_update_agent_performance(agent_id, metrics);
SELECT ruvector_get_routing_stats();

-- Affinity calculation
SELECT ruvector_calculate_agent_affinity(query, agent);
SELECT ruvector_select_best_agent(query, agent_list);

-- Adaptive routing
SELECT ruvector_adaptive_route(query, context, learning_rate);

-- FastGRNN acceleration
SELECT ruvector_fastgrnn_forward(input, hidden, weights);
```

### Local Embeddings (6 functions)

Generate embeddings directly in PostgreSQL - no external API calls needed.

```sql
-- Generate embedding from text (default: all-MiniLM-L6-v2)
SELECT ruvector_embed('Hello, world!');

-- Use specific model
SELECT ruvector_embed('Hello, world!', 'bge-small-en-v1.5');

-- Batch embedding (efficient for multiple texts)
SELECT ruvector_embed_batch(ARRAY['First doc', 'Second doc', 'Third doc']);

-- List available models
SELECT ruvector_list_models();

-- Get model information (dimensions, description)
SELECT ruvector_model_info('all-MiniLM-L6-v2');

-- Preload model into cache for faster subsequent calls
SELECT ruvector_preload_model('bge-base-en-v1.5');
```

**Supported Models:**

| Model | Dimensions | Use Case |
|-------|------------|----------|
| `all-MiniLM-L6-v2` | 384 | Fast, general-purpose (default) |
| `bge-small-en-v1.5` | 384 | MTEB #1, English |
| `bge-base-en-v1.5` | 768 | Higher accuracy, English |
| `bge-large-en-v1.5` | 1024 | Highest accuracy, English |
| `nomic-embed-text-v1` | 768 | Long context (8192 tokens) |
| `nomic-embed-text-v1.5` | 768 | Updated long context |

**Example: Automatic Embedding on Insert**

```sql
-- Create table with trigger for auto-embedding
CREATE TABLE articles (
    id SERIAL PRIMARY KEY,
    title TEXT,
    content TEXT,
    embedding ruvector(384)
);

-- Insert with automatic embedding generation
INSERT INTO articles (title, content, embedding)
VALUES (
    'Introduction to AI',
    'Artificial intelligence is transforming...',
    ruvector_embed('Artificial intelligence is transforming...')
);

-- Semantic search
SELECT title, embedding <=> ruvector_embed('machine learning basics') AS distance
FROM articles
ORDER BY distance
LIMIT 5;
```

### Self-Learning / ReasoningBank (7 functions)

Adaptive search parameter optimization.

```sql
-- Record learning trajectory
SELECT ruvector_record_trajectory(input, output, success, context);

-- Get verdict on approach
SELECT ruvector_get_verdict(trajectory_id);

-- Memory distillation
SELECT ruvector_distill_memory(trajectories, compression_ratio);

-- Adaptive search
SELECT ruvector_adaptive_search(query, context, ef_search);

-- Learning feedback
SELECT ruvector_learning_feedback(search_id, relevance_scores);

-- Get learned patterns
SELECT ruvector_get_learning_patterns(context);

-- Optimize search parameters
SELECT ruvector_optimize_search_params(query_type, historical_data);
```

### Neural DAG Learning (59 functions)

Query optimization with neural self-learning DAG analysis. The system learns from query patterns and automatically optimizes execution plans.

```sql
-- Configuration
SELECT rudag_set_config(
    learning_rate := 0.01,
    attention_mechanism := 'mincut_gated',
    trajectory_capacity := 10000,
    ewc_lambda := 5000.0
);
SELECT rudag_get_config();
SELECT rudag_reset_config();

-- DAG Analysis
SELECT rudag_analyze_query('SELECT * FROM vectors WHERE embedding <-> $1 < 0.5');
SELECT rudag_get_bottlenecks(query_id);
SELECT rudag_compute_critical_path(query_id);
SELECT rudag_estimate_cost(query_id);

-- Attention Mechanisms (7 types)
SELECT rudag_attention_topological(query_id);      -- Position-based
SELECT rudag_attention_causal_cone(query_id);      -- Downstream impact
SELECT rudag_attention_critical_path(query_id);    -- Latency focus
SELECT rudag_attention_mincut_gated(query_id);     -- Flow-aware (default)
SELECT rudag_attention_hierarchical(query_id);     -- Deep hierarchies
SELECT rudag_attention_parallel_branch(query_id);  -- Wide execution
SELECT rudag_attention_temporal(query_id);         -- Time-series

-- Learning Status
SELECT rudag_status();                  -- Current learning state
SELECT rudag_pattern_count();           -- Learned patterns
SELECT rudag_trajectory_count();        -- Recorded trajectories
SELECT rudag_get_statistics();          -- Comprehensive stats

-- Pattern Management
SELECT rudag_get_patterns(limit_n := 100);
SELECT rudag_search_patterns(query_embedding, top_k := 10);
SELECT rudag_export_patterns();         -- JSON export
SELECT rudag_import_patterns(json_data);

-- Trajectory Recording
SELECT rudag_record_trajectory(query_id, execution_time, baseline_time);
SELECT rudag_get_trajectories(limit_n := 100);
SELECT rudag_clear_trajectories();

-- Background Learning
SELECT rudag_trigger_learning();        -- Force learning cycle
SELECT rudag_get_learning_progress();

-- Self-Healing Integration
SELECT rudag_healing_status();
SELECT rudag_detect_anomalies();
SELECT rudag_trigger_repair(strategy := 'reindex');
SELECT rudag_get_repair_history();

-- QuDAG Distributed Learning (quantum-resistant)
SELECT rudag_qudag_status();            -- Network connection status
SELECT rudag_qudag_sync_patterns();     -- Sync with network
SELECT rudag_qudag_receive_patterns();  -- Get network patterns
SELECT rudag_qudag_get_peers();         -- Connected peers
SELECT rudag_qudag_stake_info();        -- rUv token staking
SELECT rudag_qudag_governance_vote(proposal_id, approve := true);
```

**Key Features:**
- **MinCut as Control Signal**: Bottleneck tension drives attention switching and healing
- **SONA Learning**: MicroLoRA adaptation (<100μs) with EWC++ catastrophic forgetting prevention
- **7 Attention Mechanisms**: Auto-selected based on query characteristics and MinCut stress
- **Predictive Healing**: Rising cut tension triggers early intervention before failures
- **QuDAG Integration**: Distributed pattern learning with ML-KEM-768 quantum-resistant crypto

### Graph Storage & Cypher (8 functions)

Graph operations with Cypher query support.

```sql
-- Create graph elements
SELECT ruvector_graph_create_node(labels, properties, embedding);
SELECT ruvector_graph_create_edge(from_node, to_node, edge_type, properties);

-- Graph queries
SELECT ruvector_graph_get_neighbors(node_id, edge_type, depth);
SELECT ruvector_graph_shortest_path(start_node, end_node);
SELECT ruvector_graph_pagerank(edge_table, damping, iterations);

-- Cypher queries
SELECT ruvector_cypher_query('MATCH (n:Person)-[:KNOWS]->(m) RETURN n, m');

-- Traversal
SELECT ruvector_graph_traverse(start_node, direction, max_depth);

-- Similarity search on graph
SELECT ruvector_graph_similarity_search(query_embedding, node_type, top_k);
```

### SPARQL & RDF (14 functions)

W3C-standard SPARQL 1.1 query language for RDF data.

```sql
-- Create RDF triple store
SELECT ruvector_create_rdf_store('knowledge_graph');

-- Insert triples
SELECT ruvector_insert_triple(
    'knowledge_graph',
    '<http://example.org/person/1>',
    '<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>',
    '<http://example.org/Person>'
);

-- Bulk load N-Triples
SELECT ruvector_load_ntriples('knowledge_graph', '
    <http://example.org/person/1> <http://xmlns.com/foaf/0.1/name> "Alice" .
    <http://example.org/person/1> <http://xmlns.com/foaf/0.1/knows> <http://example.org/person/2> .
');

-- SPARQL SELECT query
SELECT ruvector_sparql('knowledge_graph', '
    PREFIX foaf: <http://xmlns.com/foaf/0.1/>
    SELECT ?person ?name
    WHERE {
        ?person a <http://example.org/Person> .
        ?person foaf:name ?name .
    }
', 'json');

-- SPARQL ASK query
SELECT ruvector_sparql('knowledge_graph',
    'ASK { <http://example.org/person/1> ?p ?o }',
    'json'
);

-- Get store statistics
SELECT ruvector_rdf_stats('knowledge_graph');

-- Query triples by pattern (NULL = wildcard)
SELECT ruvector_query_triples('knowledge_graph',
    NULL, -- any subject
    '<http://xmlns.com/foaf/0.1/name>', -- predicate
    NULL  -- any object
);

-- SPARQL UPDATE operations
SELECT ruvector_sparql_update('knowledge_graph', '
    INSERT DATA {
        <http://example.org/person/3> <http://xmlns.com/foaf/0.1/name> "Charlie" .
    }
');
```

**SPARQL Features:**
- SELECT, CONSTRUCT, ASK, DESCRIBE query forms
- Property paths (sequence `/`, alternative `|`, inverse `^`, transitive `*`, `+`)
- FILTER expressions with 50+ built-in functions
- Aggregates (COUNT, SUM, AVG, MIN, MAX, GROUP_CONCAT)
- OPTIONAL, UNION, MINUS graph patterns
- Named graphs support
- Result formats: JSON, XML, CSV, TSV
- **~198K triples/sec** insertion, **~5.5M queries/sec** lookups

### Gated Transformers (13 functions)

Ultra-low-latency transformer inference with mincut-gated coherence control.

```sql
-- Get gate decision from integrity mincut signals
SELECT gated_transformer_gate_decision(
    lambda := 150,        -- Current mincut value
    lambda_prev := 160,   -- Previous mincut
    boundary_count := 5,  -- Witness edge count
    layer := 3            -- Current transformer layer
);
-- Returns: {"decision": "Allow", "reason": "None", "tier": 3, ...}

-- Check early exit conditions
SELECT gated_transformer_early_exit_check(
    lambda := 180,
    layer := 8,
    total_layers := 12
);
-- Returns: {"can_exit": true, "confidence": 0.92, "exit_layer": 8, ...}

-- Mixture-of-Depths token routing (50% FLOPs reduction)
SELECT gated_transformer_route_tokens(
    lambda := 150,
    token_count := 512,
    layer_capacity := 0.5  -- Route only 50% of tokens through compute
);
-- Returns: [{"index": 0, "route": "Compute"}, {"index": 1, "route": "Skip"}, ...]

-- Configuration management
SELECT gated_transformer_config();  -- Get current config
SELECT gated_transformer_set_config(
    lambda_min := 50,
    lambda_critical := 20,
    check_interval := 64
);

-- Policy management
SELECT gated_transformer_gate_policy();  -- Get current policy
SELECT gated_transformer_set_policy(
    enable_tiering := true,
    enable_kv_flush := true,
    enable_freeze := false
);

-- Bridge with integrity module
SELECT gated_transformer_from_integrity('my_hnsw_index');

-- Get combined coherence score
SELECT gated_transformer_coherence_score(
    lambda := 150,
    lambda_prev := 160,
    boundary_count := 5
);
-- Returns: 0.875 (normalized 0-1 coherence)
```

**Gated Transformer Features:**
- **Dynamic Compute Allocation**: Mixture-of-Depths routes tokens for 50% FLOPs reduction
- **Early Exit**: Layer-skipping with 30-50% latency reduction when coherence is high
- **Tiered Decisions**: 5 tiers from Full→Reduced→Conservative→Minimal→Critical
- **KV-Cache Management**: Automatic flush/freeze based on coherence signals
- **Boundary Detection**: Witness edge tracking for structural integrity

### Hybrid Search (7 functions)

Vector + keyword fusion with multiple ranking strategies.

```sql
-- Linear fusion (alpha blending)
SELECT ruvector_hybrid_linear(
    vector_results,   -- Array of (id, score) from vector search
    keyword_results,  -- Array of (id, score) from BM25
    alpha := 0.7      -- 0.7 vector weight, 0.3 keyword weight
);

-- Reciprocal Rank Fusion (RRF)
SELECT ruvector_hybrid_rrf(
    vector_results,
    keyword_results,
    k := 60  -- RRF constant
);

-- Combined search with auto-fusion
SELECT ruvector_hybrid_search(
    query_text := 'machine learning optimization',
    query_embedding := $embedding,
    table_name := 'documents',
    text_column := 'content',
    vector_column := 'embedding',
    limit_k := 10
);

-- Get/Set hybrid search parameters
SELECT ruvector_get_hybrid_alpha();  -- Returns current alpha
SELECT ruvector_set_hybrid_alpha(0.6);
SELECT ruvector_get_hybrid_rrf_k();
SELECT ruvector_set_hybrid_rrf_k(40);
```

### Multi-Tenancy (17 functions)

Row-level security with automatic tenant isolation.

```sql
-- Set current tenant context
SELECT ruvector_set_tenant('tenant_123');
SELECT ruvector_get_tenant();

-- Create tenant-isolated table
SELECT ruvector_create_tenant_table(
    'documents',
    'id SERIAL PRIMARY KEY, content TEXT, embedding ruvector(384)'
);

-- Automatic tenant filtering (via RLS policies)
INSERT INTO documents (content, embedding)
VALUES ('Hello', '[0.1, 0.2, ...]'::ruvector);
-- Automatically tagged with tenant_id

-- Query only sees current tenant's data
SELECT * FROM documents
WHERE embedding <-> $query < 0.5;

-- Tenant management
SELECT ruvector_list_tenants();
SELECT ruvector_tenant_stats('tenant_123');
SELECT ruvector_migrate_tenant('old_tenant', 'new_tenant');

-- Cross-tenant queries (admin only)
SELECT ruvector_admin_query_all_tenants('documents', 'SELECT count(*) FROM documents');
```

### Self-Healing (23 functions)

Automated index repair with integrity validation.

```sql
-- Check index health
SELECT ruvector_index_health('documents_embedding_idx');
-- Returns: {"status": "healthy", "fragmentation": 0.05, "orphaned_nodes": 0}

-- Automatic repair
SELECT ruvector_auto_repair('documents_embedding_idx');

-- Schedule maintenance
SELECT ruvector_schedule_maintenance(
    'documents_embedding_idx',
    interval := '1 day',
    repair_threshold := 0.1  -- Repair if fragmentation > 10%
);

-- Self-healing operations
SELECT ruvector_compact_index('documents_embedding_idx');
SELECT ruvector_rebalance_hnsw('documents_embedding_idx');
SELECT ruvector_rebuild_ivf_centroids('documents_embedding_idx');
SELECT ruvector_validate_graph_connectivity('documents_embedding_idx');

-- Monitor healing status
SELECT ruvector_healing_status();
SELECT ruvector_last_repair_log('documents_embedding_idx');

-- Integrity checks
SELECT ruvector_check_orphaned_vectors('documents');
SELECT ruvector_check_duplicate_vectors('documents', threshold := 0.001);
```

### Integrity Control (4 functions)

Stoer-Wagner mincut-based quality assurance for vector indices.

```sql
-- Get integrity status
SELECT ruvector_integrity_status();
-- Returns: {"enabled": true, "active_contracts": 1, "contracts": ["default"]}

-- Create integrity contract (SLA)
SELECT ruvector_integrity_create_contract(
    id := 'production_sla',
    name := 'Production SLA',
    min_recall := 0.95,        -- Minimum recall requirement
    max_latency_ms := 100,     -- Maximum query latency
    min_mincut := 0.1          -- Minimum graph connectivity
);

-- Validate against contract
SELECT ruvector_integrity_validate(
    'production_sla',
    recall := 0.97,
    latency_ms := 45,
    mincut := 0.15
);
-- Returns: {"passed": true, "recall": 0.97, "latency_ms": 45, "mincut": 0.15, "failures": []}

-- Compute mincut for graph connectivity
SELECT ruvector_mincut(
    n := 100,  -- Number of nodes
    edges_json := '[{"u": 0, "v": 1, "w": 1.0}, ...]'::jsonb
);
-- Returns minimum cut value (Stoer-Wagner algorithm)
```

## Vector Types

### `ruvector(n)` - Dense Vector

```sql
CREATE TABLE items (embedding ruvector(1536));
-- Storage: 8 + (4 x dimensions) bytes
```

### `halfvec(n)` - Half-Precision Vector

```sql
CREATE TABLE items (embedding halfvec(1536));
-- Storage: 8 + (2 x dimensions) bytes (50% savings)
```

### `sparsevec(n)` - Sparse Vector

```sql
CREATE TABLE items (embedding sparsevec(50000));
INSERT INTO items VALUES ('{1:0.5, 100:0.8, 5000:0.3}/50000');
-- Storage: 12 + (8 x non_zero_elements) bytes
```

## Distance Operators

| Operator | Distance | Use Case |
|----------|----------|----------|
| `<->` | L2 (Euclidean) | General similarity |
| `<=>` | Cosine | Text embeddings |
| `<#>` | Inner Product | Normalized vectors |
| `<+>` | Manhattan (L1) | Sparse features |

## Index Types

### HNSW (Hierarchical Navigable Small World)

```sql
CREATE INDEX ON items USING ruhnsw (embedding ruvector_l2_ops)
WITH (m = 16, ef_construction = 64);

SET ruvector.ef_search = 100;  -- Tune search quality
```

### IVFFlat (Inverted File Flat)

```sql
CREATE INDEX ON items USING ruivfflat (embedding ruvector_l2_ops)
WITH (lists = 100);

SET ruvector.ivfflat_probes = 10;  -- Tune search quality
```

## Performance Benchmarks

*AMD EPYC 7763 (64 cores), 256GB RAM:*

| Operation | 10K vectors | 100K vectors | 1M vectors |
|-----------|-------------|--------------|------------|
| HNSW Build | 0.8s | 8.2s | 95s |
| HNSW Search (top-10) | 0.3ms | 0.5ms | 1.2ms |
| Cosine Distance | 0.01ms | 0.01ms | 0.01ms |
| Poincare Distance | 0.02ms | 0.02ms | 0.02ms |
| GCN Forward | 2.1ms | 18ms | 180ms |
| BM25 Score | 0.05ms | 0.08ms | 0.15ms |

*Single distance calculation (1536 dimensions):*

| Metric | AVX2 Time | Speedup vs Scalar |
|--------|-----------|-------------------|
| L2 (Euclidean) | 38 ns | 3.7x |
| Cosine | 51 ns | 3.7x |
| Inner Product | 36 ns | 3.7x |

## Use Cases

### Semantic Search with RAG

```sql
SELECT content, embedding <=> $query_embedding AS similarity
FROM documents
WHERE category = 'technical'
ORDER BY similarity
LIMIT 5;
```

### Knowledge Graph with Hierarchical Embeddings

```sql
-- Use hyperbolic embeddings for taxonomy
SELECT name, ruvector_poincare_distance(embedding, $query, -1.0) AS distance
FROM taxonomy_nodes
ORDER BY distance
LIMIT 10;
```

### Hybrid Search (Vector + BM25)

```sql
SELECT
    content,
    0.7 * (1.0 / (1.0 + embedding <-> $query_vector)) +
    0.3 * ruvector_bm25_score(terms, doc_freqs, length, avg_len, total) AS score
FROM documents
ORDER BY score DESC
LIMIT 10;
```

### Multi-Agent Query Routing

```sql
SELECT ruvector_route_query(
    $user_query_embedding,
    (SELECT array_agg(row(name, capabilities)) FROM agents)
) AS best_agent;
```

### Graph Neural Network Inference

```sql
SELECT ruvector_gnn_gcn_layer(
    node_features,
    adjacency_matrix,
    trained_weights
) AS updated_features
FROM graph_nodes;
```

## CLI Tool

Install the CLI for easy management:

```bash
npm install -g @ruvector/postgres-cli

# Commands
ruvector-pg install                    # Install extension
ruvector-pg vector create table --dim 384 --index hnsw
ruvector-pg hyperbolic poincare-distance --a "[0.1,0.2]" --b "[0.3,0.4]"
ruvector-pg gnn gcn --features "[[...]]" --adj "[[...]]"
ruvector-pg graph query "MATCH (n) RETURN n"
ruvector-pg routing route --query "[...]" --agents agents.json
ruvector-pg learning adaptive-search --context "[...]"
ruvector-pg bench run --type all --size 10000
```

## Related Packages

- [`@ruvector/postgres-cli`]https://www.npmjs.com/package/@ruvector/postgres-cli - CLI for RuVector PostgreSQL
- [`ruvector-core`]https://crates.io/crates/ruvector-core - Core vector operations library
- [`ruvector-tiny-dancer`]https://crates.io/crates/ruvector-tiny-dancer - Agent routing library

## Documentation

| Document | Description |
|----------|-------------|
| [docs/API.md]docs/API.md | Complete SQL API reference |
| [docs/ARCHITECTURE.md]docs/ARCHITECTURE.md | System architecture |
| [docs/SIMD_OPTIMIZATION.md]docs/SIMD_OPTIMIZATION.md | SIMD details |
| [docs/guides/ATTENTION_QUICK_REFERENCE.md]docs/guides/ATTENTION_QUICK_REFERENCE.md | Attention mechanisms |
| [docs/GNN_QUICK_REFERENCE.md]docs/GNN_QUICK_REFERENCE.md | GNN layers |
| [docs/ROUTING_QUICK_REFERENCE.md]docs/ROUTING_QUICK_REFERENCE.md | Tiny Dancer routing |
| [docs/LEARNING_MODULE_README.md]docs/LEARNING_MODULE_README.md | ReasoningBank |

## Requirements

- PostgreSQL 14, 15, 16, or 17
- x86_64 (AVX2/AVX-512) or ARM64 (NEON)
- Linux, macOS, or Windows (WSL)

## License

MIT License - See [LICENSE](../../LICENSE)

## Contributing

Contributions welcome! See [CONTRIBUTING.md](../../CONTRIBUTING.md)