# RuVector-Postgres
[](https://crates.io/crates/ruvector-postgres)
[](https://docs.rs/ruvector-postgres)
[](https://opensource.org/licenses/MIT)
[](https://www.postgresql.org/)
[](https://hub.docker.com/r/ruvector/postgres)
**The most advanced PostgreSQL vector database extension.** A drop-in pgvector replacement with 53+ SQL functions, SIMD acceleration, 39 attention mechanisms, GNN layers, hyperbolic embeddings, and self-learning capabilities.
## Why RuVector?
| Vector Search | HNSW, IVFFlat | HNSW, IVFFlat (optimized) |
| Distance Metrics | 3 | 8+ (including hyperbolic) |
| **Attention Mechanisms** | - | **39 types** |
| **Graph Neural Networks** | - | **GCN, GraphSAGE, GAT** |
| **Hyperbolic Embeddings** | - | **Poincare, Lorentz** |
| **Sparse Vectors / BM25** | Partial | **Full support** |
| **Self-Learning** | - | **ReasoningBank** |
| **Agent Routing** | - | **Tiny Dancer** |
| **Graph/Cypher** | - | **Full support** |
| AVX-512/NEON SIMD | Partial | **Full** |
| Quantization | No | **Scalar, Product, Binary** |
## Installation
### Docker (Recommended)
```bash
docker run -d --name ruvector-pg \
-e POSTGRES_PASSWORD=secret \
-p 5432:5432 \
ruvector/postgres:latest
```
### From Source
```bash
# Install pgrx
cargo install cargo-pgrx --version "0.12.9" --locked
cargo pgrx init --pg16 $(which pg_config)
# Build and install
cd crates/ruvector-postgres
cargo pgrx install --release
```
### CLI Tool
```bash
npm install -g @ruvector/postgres-cli
ruvector-pg -c "postgresql://localhost:5432/mydb" install
```
## Quick Start
```sql
-- Create the extension
CREATE EXTENSION ruvector;
-- Create a table with vector column
CREATE TABLE documents (
id SERIAL PRIMARY KEY,
content TEXT,
embedding ruvector(1536)
);
-- Create an HNSW index
CREATE INDEX ON documents USING ruhnsw (embedding ruvector_l2_ops);
-- Find similar documents
SELECT content, embedding <-> '[0.15, 0.25, ...]'::ruvector AS distance
FROM documents
ORDER BY distance
LIMIT 10;
```
## 53+ SQL Functions
RuVector exposes all advanced AI capabilities as native PostgreSQL functions.
### Core Vector Operations
```sql
-- Distance metrics
SELECT ruvector_cosine_distance(a, b);
SELECT ruvector_l2_distance(a, b);
SELECT ruvector_inner_product(a, b);
SELECT ruvector_manhattan_distance(a, b);
-- Vector operations
SELECT ruvector_normalize(embedding);
SELECT ruvector_add(a, b);
SELECT ruvector_scalar_mul(embedding, 2.0);
```
### Hyperbolic Geometry (8 functions)
Perfect for hierarchical data like taxonomies, knowledge graphs, and org charts.
```sql
-- Poincare ball model
SELECT ruvector_poincare_distance(a, b, -1.0); -- curvature -1
-- Lorentz hyperboloid model
SELECT ruvector_lorentz_distance(a, b, -1.0);
-- Hyperbolic operations
SELECT ruvector_mobius_add(a, b, -1.0); -- Hyperbolic translation
SELECT ruvector_exp_map(base, tangent, -1.0); -- Tangent to manifold
SELECT ruvector_log_map(base, target, -1.0); -- Manifold to tangent
-- Model conversion
SELECT ruvector_poincare_to_lorentz(poincare_vec, -1.0);
SELECT ruvector_lorentz_to_poincare(lorentz_vec, -1.0);
-- Minkowski inner product
SELECT ruvector_minkowski_dot(a, b);
```
### Sparse Vectors & BM25 (14 functions)
Full sparse vector support with text scoring.
```sql
-- Create sparse vectors
SELECT ruvector_sparse_create(ARRAY[0, 5, 10], ARRAY[0.5, 0.3, 0.2], 100);
SELECT ruvector_sparse_from_dense(dense_vector, 0.01); -- threshold
-- Sparse operations
SELECT ruvector_sparse_dot(a, b);
SELECT ruvector_sparse_cosine(a, b);
SELECT ruvector_sparse_l2_distance(a, b);
SELECT ruvector_sparse_add(a, b);
SELECT ruvector_sparse_scale(vec, 2.0);
SELECT ruvector_sparse_normalize(vec);
SELECT ruvector_sparse_topk(vec, 10); -- Top-k elements
-- Text scoring
SELECT ruvector_bm25_score(query_terms, doc_freqs, doc_len, avg_doc_len, total_docs);
SELECT ruvector_tf_idf(term_freq, doc_freq, total_docs);
```
### 39 Attention Mechanisms
Full transformer-style attention in PostgreSQL.
```sql
-- Scaled dot-product attention
SELECT ruvector_attention_scaled_dot(query, keys, values);
-- Multi-head attention
SELECT ruvector_attention_multi_head(query, keys, values, num_heads);
-- Flash attention (memory efficient)
SELECT ruvector_attention_flash(query, keys, values, block_size);
-- Sparse attention patterns
SELECT ruvector_attention_sparse(query, keys, values, sparsity_pattern);
-- Linear attention (O(n) complexity)
SELECT ruvector_attention_linear(query, keys, values);
-- Causal/masked attention
SELECT ruvector_attention_causal(query, keys, values);
-- Cross attention
SELECT ruvector_attention_cross(query, context_keys, context_values);
-- Self attention
SELECT ruvector_attention_self(input, num_heads);
```
### Graph Neural Networks (5 functions)
GNN layers for graph-structured data.
```sql
-- GCN (Graph Convolutional Network)
SELECT ruvector_gnn_gcn_layer(features, adjacency, weights);
-- GraphSAGE (inductive learning)
SELECT ruvector_gnn_graphsage_layer(features, neighbor_features, weights);
-- GAT (Graph Attention Network)
SELECT ruvector_gnn_gat_layer(features, adjacency, attention_weights);
-- Message passing
SELECT ruvector_gnn_message_pass(node_features, edge_index, edge_weights);
-- Aggregation
SELECT ruvector_gnn_aggregate(messages, aggregation_type); -- mean, max, sum
```
### Agent Routing - Tiny Dancer (11 functions)
Intelligent query routing to specialized AI agents.
```sql
-- Route query to best agent
SELECT ruvector_route_query(query_embedding, agent_registry);
-- Route with context
SELECT ruvector_route_with_context(query, context, agents);
-- Multi-agent routing
SELECT ruvector_multi_agent_route(query, agents, top_k);
-- Agent management
SELECT ruvector_register_agent(name, capabilities, embedding);
SELECT ruvector_update_agent_performance(agent_id, metrics);
SELECT ruvector_get_routing_stats();
-- Affinity calculation
SELECT ruvector_calculate_agent_affinity(query, agent);
SELECT ruvector_select_best_agent(query, agent_list);
-- Adaptive routing
SELECT ruvector_adaptive_route(query, context, learning_rate);
-- FastGRNN acceleration
SELECT ruvector_fastgrnn_forward(input, hidden, weights);
```
### Self-Learning / ReasoningBank (7 functions)
Adaptive search parameter optimization.
```sql
-- Record learning trajectory
SELECT ruvector_record_trajectory(input, output, success, context);
-- Get verdict on approach
SELECT ruvector_get_verdict(trajectory_id);
-- Memory distillation
SELECT ruvector_distill_memory(trajectories, compression_ratio);
-- Adaptive search
SELECT ruvector_adaptive_search(query, context, ef_search);
-- Learning feedback
SELECT ruvector_learning_feedback(search_id, relevance_scores);
-- Get learned patterns
SELECT ruvector_get_learning_patterns(context);
-- Optimize search parameters
SELECT ruvector_optimize_search_params(query_type, historical_data);
```
### Graph Storage & Cypher (8 functions)
Graph operations with Cypher query support.
```sql
-- Create graph elements
SELECT ruvector_graph_create_node(labels, properties, embedding);
SELECT ruvector_graph_create_edge(from_node, to_node, edge_type, properties);
-- Graph queries
SELECT ruvector_graph_get_neighbors(node_id, edge_type, depth);
SELECT ruvector_graph_shortest_path(start_node, end_node);
SELECT ruvector_graph_pagerank(edge_table, damping, iterations);
-- Cypher queries
SELECT ruvector_cypher_query('MATCH (n:Person)-[:KNOWS]->(m) RETURN n, m');
-- Traversal
SELECT ruvector_graph_traverse(start_node, direction, max_depth);
-- Similarity search on graph
SELECT ruvector_graph_similarity_search(query_embedding, node_type, top_k);
```
## Vector Types
### `ruvector(n)` - Dense Vector
```sql
CREATE TABLE items (embedding ruvector(1536));
-- Storage: 8 + (4 x dimensions) bytes
```
### `halfvec(n)` - Half-Precision Vector
```sql
CREATE TABLE items (embedding halfvec(1536));
-- Storage: 8 + (2 x dimensions) bytes (50% savings)
```
### `sparsevec(n)` - Sparse Vector
```sql
CREATE TABLE items (embedding sparsevec(50000));
INSERT INTO items VALUES ('{1:0.5, 100:0.8, 5000:0.3}/50000');
-- Storage: 12 + (8 x non_zero_elements) bytes
```
## Distance Operators
| `<->` | L2 (Euclidean) | General similarity |
| `<=>` | Cosine | Text embeddings |
| `<#>` | Inner Product | Normalized vectors |
| `<+>` | Manhattan (L1) | Sparse features |
## Index Types
### HNSW (Hierarchical Navigable Small World)
```sql
CREATE INDEX ON items USING ruhnsw (embedding ruvector_l2_ops)
WITH (m = 16, ef_construction = 64);
SET ruvector.ef_search = 100; -- Tune search quality
```
### IVFFlat (Inverted File Flat)
```sql
CREATE INDEX ON items USING ruivfflat (embedding ruvector_l2_ops)
WITH (lists = 100);
SET ruvector.ivfflat_probes = 10; -- Tune search quality
```
## Performance Benchmarks
*AMD EPYC 7763 (64 cores), 256GB RAM:*
| HNSW Build | 0.8s | 8.2s | 95s |
| HNSW Search (top-10) | 0.3ms | 0.5ms | 1.2ms |
| Cosine Distance | 0.01ms | 0.01ms | 0.01ms |
| Poincare Distance | 0.02ms | 0.02ms | 0.02ms |
| GCN Forward | 2.1ms | 18ms | 180ms |
| BM25 Score | 0.05ms | 0.08ms | 0.15ms |
*Single distance calculation (1536 dimensions):*
| L2 (Euclidean) | 38 ns | 3.7x |
| Cosine | 51 ns | 3.7x |
| Inner Product | 36 ns | 3.7x |
## Use Cases
### Semantic Search with RAG
```sql
SELECT content, embedding <=> $query_embedding AS similarity
FROM documents
WHERE category = 'technical'
ORDER BY similarity
LIMIT 5;
```
### Knowledge Graph with Hierarchical Embeddings
```sql
-- Use hyperbolic embeddings for taxonomy
SELECT name, ruvector_poincare_distance(embedding, $query, -1.0) AS distance
FROM taxonomy_nodes
ORDER BY distance
LIMIT 10;
```
### Hybrid Search (Vector + BM25)
```sql
SELECT
content,
0.7 * (1.0 / (1.0 + embedding <-> $query_vector)) +
0.3 * ruvector_bm25_score(terms, doc_freqs, length, avg_len, total) AS score
FROM documents
ORDER BY score DESC
LIMIT 10;
```
### Multi-Agent Query Routing
```sql
SELECT ruvector_route_query(
$user_query_embedding,
(SELECT array_agg(row(name, capabilities)) FROM agents)
) AS best_agent;
```
### Graph Neural Network Inference
```sql
SELECT ruvector_gnn_gcn_layer(
node_features,
adjacency_matrix,
trained_weights
) AS updated_features
FROM graph_nodes;
```
## CLI Tool
Install the CLI for easy management:
```bash
npm install -g @ruvector/postgres-cli
# Commands
ruvector-pg install # Install extension
ruvector-pg vector create table --dim 384 --index hnsw
ruvector-pg hyperbolic poincare-distance --a "[0.1,0.2]" --b "[0.3,0.4]"
ruvector-pg gnn gcn --features "[[...]]" --adj "[[...]]"
ruvector-pg graph query "MATCH (n) RETURN n"
ruvector-pg routing route --query "[...]" --agents agents.json
ruvector-pg learning adaptive-search --context "[...]"
ruvector-pg bench run --type all --size 10000
```
## Related Packages
- [`@ruvector/postgres-cli`](https://www.npmjs.com/package/@ruvector/postgres-cli) - CLI for RuVector PostgreSQL
- [`ruvector-core`](https://crates.io/crates/ruvector-core) - Core vector operations library
- [`ruvector-tiny-dancer`](https://crates.io/crates/ruvector-tiny-dancer) - Agent routing library
## Documentation
| [docs/API.md](docs/API.md) | Complete SQL API reference |
| [docs/ARCHITECTURE.md](docs/ARCHITECTURE.md) | System architecture |
| [docs/SIMD_OPTIMIZATION.md](docs/SIMD_OPTIMIZATION.md) | SIMD details |
| [docs/guides/ATTENTION_QUICK_REFERENCE.md](docs/guides/ATTENTION_QUICK_REFERENCE.md) | Attention mechanisms |
| [docs/GNN_QUICK_REFERENCE.md](docs/GNN_QUICK_REFERENCE.md) | GNN layers |
| [docs/ROUTING_QUICK_REFERENCE.md](docs/ROUTING_QUICK_REFERENCE.md) | Tiny Dancer routing |
| [docs/LEARNING_MODULE_README.md](docs/LEARNING_MODULE_README.md) | ReasoningBank |
## Requirements
- PostgreSQL 14, 15, 16, or 17
- x86_64 (AVX2/AVX-512) or ARM64 (NEON)
- Linux, macOS, or Windows (WSL)
## License
MIT License - See [LICENSE](../../LICENSE)
## Contributing
Contributions welcome! See [CONTRIBUTING.md](../../CONTRIBUTING.md)