# RuVector Discovery Framework - Export Guide
## Overview
The export module provides comprehensive export functionality for RuVector Discovery Framework results. Export graphs, patterns, and coherence data in multiple industry-standard formats.
## Supported Formats
### 1. GraphML (`.graphml`)
- **Use Case**: Import into Gephi, Cytoscape, yEd
- **Features**: Full graph structure with node/edge attributes
- **Best For**: Visual network analysis, community detection
### 2. DOT (`.dot`)
- **Use Case**: Render with Graphviz (dot, neato, fdp, sfdp)
- **Features**: Hierarchical or force-directed layouts
- **Best For**: Publication-quality graph visualizations
### 3. CSV (`.csv`)
- **Use Case**: Analysis in Excel, R, Python, Julia
- **Features**: Tabular data with full pattern/coherence details
- **Best For**: Statistical analysis, time-series analysis
## Quick Start
### Basic Export
```rust
use ruvector_data_framework::export::{export_graphml, export_dot, export_patterns_csv};
// Export graph to GraphML (for Gephi)
export_graphml(&engine, "graph.graphml", None)?;
// Export graph to DOT (for Graphviz)
export_dot(&engine, "graph.dot", None)?;
// Export patterns to CSV
export_patterns_csv(&patterns, "patterns.csv")?;
```
### Filtered Export
```rust
use ruvector_data_framework::export::ExportFilter;
use ruvector_data_framework::ruvector_native::Domain;
// Export only climate domain
let filter = ExportFilter::domain(Domain::Climate);
export_graphml(&engine, "climate.graphml", Some(filter))?;
// Export only strong edges
let filter = ExportFilter::min_weight(0.8);
export_graphml(&engine, "strong_edges.graphml", Some(filter))?;
// Combine filters
let filter = ExportFilter::domain(Domain::Finance)
.and(ExportFilter::min_weight(0.7));
export_graphml(&engine, "finance_strong.graphml", Some(filter))?;
```
### Export Everything
```rust
use ruvector_data_framework::export::export_all;
// Export all data to a directory
export_all(&engine, &patterns, &coherence_history, "output")?;
```
## Export Functions
### Graph Export
#### `export_graphml(engine, path, filter)`
Exports graph in GraphML format (XML-based).
**Node Attributes:**
- `domain`: Climate, Finance, Research, CrossDomain
- `external_id`: External identifier
- `weight`: Node weight
- `timestamp`: When node was created
**Edge Attributes:**
- `weight`: Edge weight (similarity/correlation)
- `type`: EdgeType (similarity, correlation, citation, causal, cross_domain)
- `timestamp`: When edge was created
- `cross_domain`: Boolean indicating cross-domain connection
#### `export_dot(engine, path, filter)`
Exports graph in DOT format (text-based).
**Features:**
- Domain-specific colors
- Layout hints for Graphviz
- Edge weights as labels
- Node shapes by domain
### Pattern Export
#### `export_patterns_csv(patterns, path)`
Exports detected patterns to CSV.
**Columns:**
- `id`: Pattern identifier
- `pattern_type`: Type (consolidation, coherence_break, etc.)
- `confidence`: Confidence score (0-1)
- `p_value`: Statistical significance
- `effect_size`: Effect size (Cohen's d)
- `ci_lower`, `ci_upper`: 95% confidence interval
- `is_significant`: Boolean
- `detected_at`: ISO 8601 timestamp
- `description`: Human-readable description
- `affected_nodes_count`: Number of affected nodes
- `evidence_count`: Number of evidence items
#### `export_patterns_with_evidence_csv(patterns, path)`
Exports patterns with detailed evidence.
**Columns:**
- `pattern_id`: Pattern identifier
- `pattern_type`: Type of pattern
- `evidence_type`: Type of evidence
- `evidence_value`: Numeric value
- `evidence_description`: Description
- `detected_at`: ISO 8601 timestamp
### Coherence Export
#### `export_coherence_csv(history, path)`
Exports coherence history over time.
**Columns:**
- `timestamp`: ISO 8601 timestamp
- `mincut_value`: Minimum cut value (coherence measure)
- `node_count`: Number of nodes
- `edge_count`: Number of edges
- `avg_edge_weight`: Average edge weight
- `partition_size_a`, `partition_size_b`: Partition sizes
- `boundary_nodes_count`: Nodes on cut boundary
## Visualization Workflows
### Gephi (Network Visualization)
1. **Import GraphML:**
```
File → Open → graph.graphml
```
2. **Apply Layout:**
- Force Atlas 2 (recommended)
- Fruchterman Reingold
- OpenORD (for large graphs)
3. **Color by Domain:**
- Appearance → Nodes → Color → Partition
- Select "domain" attribute
- Apply
4. **Size by Centrality:**
- Statistics → Network Diameter
- Appearance → Nodes → Size → Ranking
- Select betweenness centrality
### Graphviz (Publication Graphics)
```bash
# Force-directed layout
neato -Tpng graph.dot -o graph.png
# Hierarchical layout
dot -Tsvg graph.dot -o graph.svg
# Spring-electric layout (large graphs)
sfdp -Tpdf graph.dot -o graph.pdf
# Radial layout
twopi -Tsvg graph.dot -o graph.svg
```
### Python Analysis
```python
import pandas as pd
import networkx as nx
# Load patterns
patterns = pd.read_csv('patterns.csv')
significant = patterns[patterns['is_significant'] == True]
# Load coherence
coherence = pd.read_csv('coherence.csv')
coherence['timestamp'] = pd.to_datetime(coherence['timestamp'])
# Plot coherence over time
import matplotlib.pyplot as plt
plt.plot(coherence['timestamp'], coherence['mincut_value'])
plt.xlabel('Time')
plt.ylabel('Min-Cut Value')
plt.title('Network Coherence Over Time')
plt.show()
# Load GraphML
G = nx.read_graphml('graph.graphml')
print(f"Nodes: {G.number_of_nodes()}")
print(f"Edges: {G.number_of_edges()}")
```
### R Analysis
```r
library(tidyverse)
library(igraph)
# Load patterns
patterns <- read_csv('patterns.csv')
significant <- filter(patterns, is_significant == TRUE)
# Load coherence
coherence <- read_csv('coherence.csv') %>%
mutate(timestamp = as.POSIXct(timestamp))
# Plot
ggplot(coherence, aes(x=timestamp, y=mincut_value)) +
geom_line() +
labs(title="Network Coherence Over Time",
x="Time", y="Min-Cut Value")
# Load graph
g <- read_graph('graph.graphml', format='graphml')
summary(g)
```
## Export Filter Options
### Domain Filter
```rust
ExportFilter::domain(Domain::Climate)
```
### Weight Filter
```rust
ExportFilter::min_weight(0.7)
```
### Time Range Filter
```rust
use chrono::Utc;
let start = Utc::now() - chrono::Duration::days(30);
let end = Utc::now();
ExportFilter::time_range(start, end)
```
### Combined Filters
```rust
ExportFilter::domain(Domain::Finance)
.and(ExportFilter::min_weight(0.8))
.and(ExportFilter::time_range(start, end))
```
## Example Output
Running the export demo:
```bash
cargo run --example export_demo --features parallel
```
Creates:
```
discovery_exports/
├── graph.graphml # Full graph (Gephi)
├── graph.dot # Full graph (Graphviz)
├── climate_only.graphml # Climate domain only
└── full_export/
├── README.md # Documentation
├── graph.graphml # Full graph
├── graph.dot # Full graph
├── patterns.csv # Detected patterns
├── patterns_evidence.csv # Pattern evidence
└── coherence.csv # Coherence history
```
## Advanced Usage
### Custom Export Pipeline
```rust
use ruvector_data_framework::export::*;
// 1. Export full graph
export_graphml(&engine, "full_graph.graphml", None)?;
// 2. Export each domain separately
for domain in [Domain::Climate, Domain::Finance, Domain::Research] {
let filter = ExportFilter::domain(domain);
let filename = format!("{:?}_graph.graphml", domain);
export_graphml(&engine, &filename, Some(filter))?;
}
// 3. Export significant patterns only
let significant_patterns: Vec<_> = patterns.iter()
.filter(|p| p.is_significant)
.cloned()
.collect();
export_patterns_csv(&significant_patterns, "significant_patterns.csv")?;
// 4. Export time-windowed coherence
let recent_history: Vec<_> = coherence_history.iter()
.rev()
.take(100)
.cloned()
.collect();
export_coherence_csv(&recent_history, "recent_coherence.csv")?;
```
## Performance Considerations
- **Large Graphs**: Use filters to reduce export size
- **GraphML**: XML parsing can be slow for >100K nodes
- **DOT**: Graphviz rendering slows down at >10K nodes
- **CSV**: Very efficient for patterns and coherence data
## Future Enhancements
The export module currently provides a foundation. To access the full graph data (nodes and edges), the `OptimizedDiscoveryEngine` will need to expose:
```rust
pub fn nodes(&self) -> &HashMap<u32, GraphNode>
pub fn edges(&self) -> &[GraphEdge]
pub fn get_node(&self, id: u32) -> Option<&GraphNode>
```
Once these methods are added, the GraphML and DOT exports will include actual node and edge data.
## Related Examples
- `examples/export_demo.rs` - Basic export demonstration
- `examples/cross_domain_discovery.rs` - Cross-domain pattern detection
- `examples/discovery_hunter.rs` - Advanced pattern hunting
- `examples/optimized_benchmark.rs` - Performance testing
## Support
For issues or questions:
- GitHub: https://github.com/ruvnet/ruvector
- Documentation: See framework README