# RuVector Dataset Discovery Framework
**Find hidden patterns and connections in massive datasets that traditional tools miss.**
RuVector turns your dataβresearch papers, climate records, financial filingsβinto a connected graph, then uses cutting-edge algorithms to spot emerging trends, cross-domain relationships, and regime shifts *before* they become obvious.
## Why RuVector?
Most data analysis tools excel at answering questions you already know to ask. RuVector is different: it helps you **discover what you don't know you're looking for**.
**Real-world examples:**
- π¬ **Research**: Spot a new field forming 6-12 months before it gets a name, by detecting when papers start citing across traditional boundaries
- π **Climate**: Detect regime shifts in weather patterns that correlate with economic disruptions
- π° **Finance**: Find companies whose narratives are diverging from their peersβoften an early warning signal
## Features
| **Vector Memory** | Stores data as 384-1536 dim embeddings | Similar concepts cluster together automatically |
| **HNSW Index** | O(log n) approximate nearest neighbor search | 10-50x faster than brute force for large datasets |
| **Graph Structure** | Connects related items with weighted edges | Reveals hidden relationships in your data |
| **Min-Cut Analysis** | Measures how "connected" your network is | Detects regime changes and fragmentation |
| **Cross-Domain Detection** | Finds bridges between different fields | Discovers unexpected correlations (e.g., climate β finance) |
| **ONNX Embeddings** | Neural semantic embeddings (MiniLM, BGE, etc.) | Production-quality text understanding |
| **Causality Testing** | Checks if changes in X predict changes in Y | Moves beyond correlation to actionable insights |
| **Statistical Rigor** | Reports p-values and effect sizes | Know which findings are real vs. noise |
### What's New in v0.3.0
- **HNSW Integration**: O(n log n) similarity search replaces O(nΒ²) brute force
- **Similarity Cache**: 2-3x speedup for repeated similarity queries
- **Batch ONNX Embeddings**: Chunked processing with progress callbacks
- **Shared Utils Module**: `cosine_similarity`, `euclidean_distance`, `normalize_vector`
- **Auto-connect by Embeddings**: CoherenceEngine creates edges from vector similarity
### Performance
- β‘ **10-50x faster** similarity search (HNSW vs brute force)
- β‘ **8.8x faster** batch vector insertion (parallel processing)
- β‘ **2.9x faster** similarity computation (SIMD acceleration)
- β‘ **2-3x faster** repeated queries (similarity cache)
- π Works with **millions of records** on standard hardware
## Quick Start
### Prerequisites
```bash
# Ensure you're in the ruvector workspace
cd /workspaces/ruvector
```
### Run Your First Example
```bash
# 1. Performance benchmark - see the speed improvements
cargo run --example optimized_benchmark -p ruvector-data-framework --features parallel --release
# 2. Discovery hunter - find patterns in sample data
cargo run --example discovery_hunter -p ruvector-data-framework --features parallel --release
# 3. Cross-domain analysis - detect bridges between fields
cargo run --example cross_domain_discovery -p ruvector-data-framework --release
```
### Domain-Specific Examples
```bash
# Climate: Detect weather regime shifts
cargo run --example regime_detector -p ruvector-data-climate
# Finance: Monitor corporate filing coherence
cargo run --example coherence_watch -p ruvector-data-edgar
```
### What You'll See
```
π Discovery Results:
Pattern: Climate β Finance bridge detected
Strength: 0.73 (strong connection)
P-value: 0.031 (statistically significant)
β Drought indices may predict utility sector
performance with a 3-period lag
```
## The Discovery Thesis
RuVector's unique combination of **vector memory**, **graph structures**, and **dynamic minimum cut algorithms** enables discoveries that most analysis tools miss:
- **Emerging patterns before they have names**: Detect topic splits and merges as cut boundaries shift over time
- **Non-obvious cross-domain bridges**: Find small "connector" subgraphs where disciplines quietly start citing each other
- **Causal leverage maps**: Link funders, labs, venues, and downstream citations to spot high-impact intervention points
- **Regime shifts in time series**: Use coherence breaks to flag fundamental changes in system behavior
## Tutorial
### 1. Creating the Engine
```rust
use ruvector_data_framework::optimized::{
OptimizedDiscoveryEngine, OptimizedConfig,
};
use ruvector_data_framework::ruvector_native::{
Domain, SemanticVector,
};
let config = OptimizedConfig {
similarity_threshold: 0.55, // Minimum cosine similarity
mincut_sensitivity: 0.10, // Coherence change threshold
cross_domain: true, // Enable cross-domain discovery
use_simd: true, // SIMD acceleration
significance_threshold: 0.05, // P-value threshold
causality_lookback: 12, // Temporal lookback periods
..Default::default()
};
let mut engine = OptimizedDiscoveryEngine::new(config);
```
### 2. Adding Data
```rust
use std::collections::HashMap;
use chrono::Utc;
// Single vector
let vector = SemanticVector {
id: "climate_drought_2024".to_string(),
embedding: generate_embedding(), // 128-dim vector
domain: Domain::Climate,
timestamp: Utc::now(),
metadata: HashMap::from([
("region".to_string(), "sahel".to_string()),
("severity".to_string(), "extreme".to_string()),
]),
};
let node_id = engine.add_vector(vector);
// Batch insertion (8.8x faster)
#[cfg(feature = "parallel")]
{
let vectors: Vec<SemanticVector> = load_vectors();
let node_ids = engine.add_vectors_batch(vectors);
}
```
### 3. Computing Coherence
```rust
let snapshot = engine.compute_coherence();
println!("Min-cut value: {:.3}", snapshot.mincut_value);
println!("Partition sizes: {:?}", snapshot.partition_sizes);
println!("Boundary nodes: {:?}", snapshot.boundary_nodes);
```
**Interpretation:**
| Rising | Network consolidating, stronger connections |
| Falling | Fragmentation, potential regime change |
| Stable | Steady state, consistent structure |
### 4. Pattern Detection
```rust
let patterns = engine.detect_patterns_with_significance();
println!(" P-value: {:.4}", pattern.p_value);
println!(" Effect size: {:.3}", pattern.effect_size);
}
```
**Pattern Types:**
| `CoherenceBreak` | Min-cut dropped significantly | Network fragmentation crisis |
| `Consolidation` | Min-cut increased | Market convergence |
| `BridgeFormation` | Cross-domain connections | Climate-finance link |
| `Cascade` | Temporal causality | Climate β Finance lag-3 |
| `EmergingCluster` | New dense subgraph | Research topic emerging |
### 5. Cross-Domain Analysis
```rust
// Check coupling strength
let stats = engine.stats();
let coupling = stats.cross_domain_edges as f64 / stats.total_edges as f64;
println!("Cross-domain coupling: {:.1}%", coupling * 100.0);
// Domain coherence scores
for domain in [Domain::Climate, Domain::Finance, Domain::Research] {
if let Some(coh) = engine.domain_coherence(domain) {
println!("{:?}: {:.3}", domain, coh);
}
}
```
## Performance Benchmarks
| Vector Insertion | 133ms | 15ms | **8.84x** |
| SIMD Cosine | 432ms | 148ms | **2.91x** |
| Pattern Detection | 524ms | 655ms | - |
## Datasets
### 1. OpenAlex (Research Intelligence)
**Best for**: Emerging field detection, cross-discipline bridges
- 250M+ works, 90M+ authors
- Native graph structure
- Bulk download + API access
```rust
use ruvector_data_openalex::{OpenAlexConfig, FrontierRadar};
let radar = FrontierRadar::new(OpenAlexConfig::default());
let frontiers = radar.detect_emerging_topics(papers);
```
### 2. NOAA + NASA (Climate Intelligence)
**Best for**: Regime shift detection, anomaly prediction
- Weather observations, satellite imagery
- Time series β graph transformation
- Economic risk modeling
```rust
use ruvector_data_climate::{ClimateConfig, RegimeDetector};
let detector = RegimeDetector::new(config);
let shifts = detector.detect_shifts();
```
### 3. SEC EDGAR (Financial Intelligence)
**Best for**: Corporate risk signals, peer divergence
- XBRL financial statements
- 10-K/10-Q filings
- Narrative + fundamental analysis
```rust
use ruvector_data_edgar::{EdgarConfig, CoherenceMonitor};
let monitor = CoherenceMonitor::new(config);
let alerts = monitor.analyze_filing(filing);
```
## Directory Structure
```
examples/data/
βββ README.md # This file
βββ Cargo.toml # Workspace manifest
βββ framework/ # Core discovery framework
β βββ src/
β β βββ lib.rs # Framework exports
β β βββ ruvector_native.rs # Native engine with Stoer-Wagner
β β βββ optimized.rs # SIMD + parallel optimizations
β β βββ coherence.rs # Coherence signal computation
β β βββ discovery.rs # Pattern detection
β β βββ ingester.rs # Data ingestion
β βββ examples/
β βββ cross_domain_discovery.rs # Cross-domain patterns
β βββ optimized_benchmark.rs # Performance comparison
β βββ discovery_hunter.rs # Novel pattern search
βββ openalex/ # OpenAlex integration
βββ climate/ # NOAA/NASA integration
βββ edgar/ # SEC EDGAR integration
```
## Configuration Reference
### OptimizedConfig
| `similarity_threshold` | 0.65 | Minimum cosine similarity for edges |
| `mincut_sensitivity` | 0.12 | Sensitivity to coherence changes |
| `cross_domain` | true | Enable cross-domain discovery |
| `batch_size` | 256 | Parallel batch size |
| `use_simd` | true | Enable SIMD acceleration |
| `similarity_cache_size` | 10000 | Max cached similarity pairs |
| `significance_threshold` | 0.05 | P-value threshold |
| `causality_lookback` | 10 | Temporal lookback periods |
| `causality_min_correlation` | 0.6 | Minimum correlation for causality |
### CoherenceConfig (v0.3.0)
| `similarity_threshold` | 0.5 | Min similarity for auto-connecting embeddings |
| `use_embeddings` | true | Auto-create edges from embedding similarity |
| `hnsw_k_neighbors` | 50 | Neighbors to search per vector (HNSW) |
| `hnsw_min_records` | 100 | Min records to trigger HNSW (else brute force) |
| `min_edge_weight` | 0.01 | Minimum edge weight threshold |
| `approximate` | true | Use approximate min-cut for speed |
| `parallel` | true | Enable parallel computation |
## Discovery Examples
### Climate-Finance Bridge
```
Detected: Climate β Finance bridge
Strength: 0.73
Connections: 197
Hypothesis: Drought indices may predict
utility sector performance with lag-2
```
### Regime Shift Detection
```
Min-cut trajectory:
t=0: 72.5 (baseline)
t=1: 73.3 (+1.1%)
t=2: 74.5 (+1.6%) β Consolidation
Effect size: 2.99 (large)
P-value: 0.042 (significant)
```
### Causality Pattern
```
Climate β Finance causality detected
F-statistic: 4.23
Optimal lag: 3 periods
Correlation: 0.67
P-value: 0.031
```
## Algorithms
### HNSW (Hierarchical Navigable Small World)
Approximate nearest neighbor search in high-dimensional spaces.
- **Complexity**: O(log n) search, O(log n) insert
- **Use**: Fast similarity search for edge creation
- **Parameters**: `m=16`, `ef_construction=200`, `ef_search=50`
### Stoer-Wagner Min-Cut
Computes minimum cut of weighted undirected graph.
- **Complexity**: O(VE + VΒ² log V)
- **Use**: Network coherence measurement
### SIMD Cosine Similarity
Processes 8 floats per iteration using AVX2.
- **Speedup**: 2.9x vs scalar
- **Fallback**: Chunked scalar (8 floats per iteration)
### Granger Causality
Tests if past values of X predict Y.
1. Compute cross-correlation at lags 1..k
2. Find optimal lag with max |correlation|
3. Calculate F-statistic
4. Convert to p-value
## Best Practices
1. **Start with low thresholds** - Use `similarity_threshold: 0.45` for exploration
2. **Use batch insertion** - `add_vectors_batch()` is 8x faster
3. **Monitor coherence trends** - Min-cut trajectory predicts regime changes
4. **Filter by significance** - Focus on `p_value < 0.05`
5. **Validate causality** - Temporal patterns need domain expertise
## Troubleshooting
| No patterns detected | Lower `mincut_sensitivity` to 0.05 |
| Too many edges | Raise `similarity_threshold` to 0.70 |
| Slow performance | Use `--features parallel --release` |
| Memory issues | Reduce `batch_size` |
## References
- [OpenAlex Documentation](https://docs.openalex.org/)
- [NOAA Open Data](https://www.noaa.gov/information-technology/open-data-dissemination)
- [NASA Earthdata](https://earthdata.nasa.gov/)
- [SEC EDGAR](https://www.sec.gov/edgar)
## License
MIT OR Apache-2.0