rusty_lr 0.9.0

yacc-like, proc-macro based LR(1) and LALR(1) parser generator and code generation
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
# RustyLR

LR(1) and LALR(1) Deterministic Finite Automata (DFA) generator from Context Free Grammar (CFGs).

```
[dependencies]
rusty_lr = "0.9.0"
```

## Features

 - pure Rust implementation
 - readable error messages, both for grammar building and parsing
 - compile-time DFA construction from CFGs ( with proc-macro )
 - customizable reduce action
 - resolving conflicts of ambiguous grammar
 - tracing parser action with callback

#### Why proc-macro, not external executable?

 - Decent built-in lexer, with consideration of unicode and comments.
 - Can generate *pretty* error messages, by just passing `Span` data.
 - With modern IDE, can see errors in real-time with specific location.

## Sample


Please refer to the [example](example) directory for the full example.

In [`example/calculator/parser.rs`](example/calculator/src/parser.rs),
```rust
use rusty_lr::lr1;
use rusty_lr::lalr1;

enum Token {
    // token definitions
    ...
}

// this define struct `EParser`
// where 'E' is the start symbol
lalr1! {
    // type of userdata
    %userdata i32;
    // type of token ( as Terminal symbol )
    %tokentype Token;

    // start symbol
    %start E;
    // eof symbol; for augmented rule generation
    %eof Token::Eof;

    // define tokens
    %token num Token::Num(0); // `num` maps to `Token::Num(0)`
    %token plus Token::Plus;
    %token star Token::Star;
    %token lparen Token::LParen;
    %token rparen Token::RParen;

    // resolving shift/reduce conflict
    %left plus;
    %left star;

    // data that each token holds can be accessed by its name
    // s is slice of shifted terminal symbols captured by current rule
    // userdata can be accessed by `data` ( &mut i32, for this situation )
    A(i32) : A plus a2=A {
            println!("{:?} {:?} {:?}", A.slice, *plus, a2.slice );
            //                         ^        ^      ^
            //                         |        |      |- slice of 2nd 'A'
            //                         |        |- &Token
            //                         |- slice of 1st 'A'
            println!( "{:?}", s );
            *data += 1;
            A.value + a2.value // --> this will be new value of current 'A'
        //  ^         ^
        //  |         |- value of 2nd 'A'
        //  |- value of 1st 'A'
        }
      | M { M.value }
      ;

    M(i32) : M star m2=M { *M * *m2 }
      | P { *P }
      ;

    P(i32) : num {
        if let Token::Num(n) = *num { *n }
        else { return Err(format!("{:?}", num)); }
        //            ^^^^^^^^^^^^^^^^^^^^^^^^^^
        //             reduce action returns Result<(), String>
    }
      | lparen E rparen { *E }
      ;

    E(i32) : A  { *A };
}
```

In [`example/calculator/src/main.rs`](example/calculator/src/main.rs),
```rust
mod parser;

fn main() {
    use parser::Token;
    // 1 + 2 * ( 3 + 4 ) = 15
    let input = vec![
        Token::Num(1),
        Token::Plus,
        Token::Num(2),
        Token::Star,
        Token::LParen,
        Token::Num(3),
        Token::Plus,
        Token::Num(4),
        Token::RParen,
        Token::Eof,
    ];

    let parser = parser::EParser::new();
    let mut context = parser.begin();
    let mut userdata: i32 = 0;
    for token in input {
        match parser.feed(&mut context, token, &mut userdata) {
            //                          ^^^^^   ^^^^^^^^^^^^ userdata passed here as `&mut i32`
            //                           |- feed token
            Ok(_) => {}
            Err(e) => {
                println!("{:?}", e);
                return;
            }
        }
    }
    // res = value of start symbol ( E(i32) )
    let res = context.accept();
    println!("{}", res);
    println!("userdata: {}", userdata);
}
```

The result will be:
```
[Num(3)] Plus [Num(4)]
[Num(3), Plus, Num(4)]
[Num(1)] Plus [Num(2), Star, LParen, Num(3), Plus, Num(4), RParen]
[Num(1), Plus, Num(2), Star, LParen, Num(3), Plus, Num(4), RParen]
15
userdata: 2
```

## Build Deterministic Finite Automata (DFA) from Context Free Grammar (CFG)

This section will describe how to build DFA from CFGs, on runtime.

### 1. Define terminal and non-terminal symbols


```rust
#[derive(Clone, Hash, PartialEq, Eq, PartialOrd, Ord)] // must implement these traits

pub enum Term {
    Num,
    Plus,
    Mul,
    LeftParen,
    RightParen,
    Eof,
}

#[derive(Clone, Hash, PartialEq, Eq)] // must implement these traits

pub enum NonTerm {
    E,
    A,
    M,
    P,
    Augmented,
}

/// impl Display for TermType, NonTermType will make related ProductionRule, error message Display-able
impl Display for TermType { ... }
impl Display for NonTermType { ... }
```
Or simply, you can use `char` or `u8` as terminal, and `&'static str` or `String` as non-terminal.
***Any type*** that implements traits above can be used as terminal and non-terminal symbols.

### 2. Define production rules

Consider the following context free grammar.
```
A -> A + A  (reduce left)
A -> M
```
This grammar can be written as:
```rust
/// type alias
type Token = rusty_lr::Token<Term, NonTerm>;

/// create grammar
let mut grammar = rusty_lr::Grammar::<Term,NonTerm>::new();

grammar.add_rule(
    NonTerm::A,
    vec![Token::NonTerm(NonTerm::A), Token::Term(Term::Plus), Token::NonTerm(NonTerm::A)],
);
grammar.add_rule(
    NonTerm::A,
    vec![Token::NonTerm(NonTerm::M)],
);

/// set reduce type
grammar.set_reduce_type( Term::Plus, ReduceType::Left );
```

Note that the production rule `A -> A + A` has a shift/reduce conflict. To resolve this conflict, the precedence of shift/reduce is given to terminal symbol `Plus`. `Left` means that for `Plus` token, the parser will reduce the rule instead of shifting the token.

reduce/reduce conflict (e.g. duplicated rules) will be always an error.

### 3. Build DFA

Calling `grammar.build()` for LR(1) or `grammar.build_lalr()` for LALR(1) will build the DFA from the CFGs.

```rust
let parser:rusty_lr::Parser<Term,NonTerm> = match grammar.build(NonTerm::Augmented) {
    Ok(parser) => parser,
    Err(err) => {
        // error is Display if Term, NonTerm is Display
        eprintln!("{}", err);
        return;
    }
};
```

You must explicitly specify the Augmented non-terminal symbol, and the Augmented production rule must be defined in the grammar.
```
Augmented -> StartSymbol $
```

The returned `Parser` struct contains the DFA states and the production rules(cloned).
It is completely independent from the `Grammar`, so you can drop the `Grammar` struct, or export the `Parser` struct to another module.

### 4. Error messages

The `Error` type returned from `Grammar::build()` will contain the error information.
You can manually `match` the error type for custom error message,
but for most cases, using `println!("{}", err)` will be enough to see the detailed errors.
Error is `Display` if both `Term` and `NonTerm` is `Display`, and It is `Debug` if both `Term` and `NonTerm` is `Debug`.

#### Sample error messages

For Shift/Reduce conflicts,
```
Build failed: Shift/Reduce Conflict
NextTerm: '0'
Reduce Rule:
"Num" -> "Digit"
Shift Rules:
"Digit" -> '0' • /Lookaheads: '\0', '0'
Try rearanging the rules or set ReduceType to Terminal '0' to resolve the conflict.
```
For Reduce/Reduce conflicts,
```
Build failed: Reduce/Reduce Conflict with lookahead: '\0'
Production Rule1:
"Num" -> "Digit"
Production Rule2:
"Num" -> "Digit"
```

## Parse input sequence with generated DFA

For given input sequence, you can start parsing with `Parser::begin()` method.
Once you get the `Context` from `begin()`,
you can feed the input sequence one by one with `Parser::feed()` method.

```rust
let terms = vec![ Term::Num, Term::Plus, Term::Num, Term::Mul, Term::LeftParen, Term::Num, Term::Plus, Term::Num, Term::RightParen, Term::Eof];

// start parsing
let mut context = parser.begin();

// feed input sequence
for term in terms {
    match parser.feed(&mut context, term) {
        Ok(_) => (),
        Err(err) => {
            eprintln!("{:?}", err);
            return;
        }
    }
}
```

`EOF` token is feeded at the end of sequence, and the augmented rule `Augmented -> StartSymbol $` will not be reduced since there are no lookahead symbols.

### Parse with callback


For tracing parser action, you can implement `Callback` trait and pass it to `parser.feed_callback()`.

```rust
struct ParserCallback {}

impl rusty_lr::Callback<Term, NonTerm> for ParserCallback {
    /// Error type for callback
    type Error = String;

    fn reduce(
        &mut self,
        rules: &[rusty_lr::ProductionRule<char, String>],
        //                                  ^     |- NonTerm
        //                                  |- Term
        states: &[rusty_lr::State<char, String>],
        //                         ^     |- NonTerm
        //                         |- Term
        state_stack: &[usize],
        rule: usize,
    ) -> Result<(), Self::Error> {
        // `Rule` is Display if Term, NonTerm is Display
        println!("Reduce by {}", rules[rule]);
        Ok(())
    }
    fn shift_and_goto(
        &mut self,
        rules: &[rusty_lr::ProductionRule<char, String>],
        states: &[rusty_lr::State<char, String>],
        state_stack: &[usize],
        term: &char,
    ) -> Result<(), Self::Error> {
        Ok(())
    }
    fn shift_and_goto_nonterm(
        &mut self,
        rules: &[rusty_lr::ProductionRule<char, String>],
        states: &[rusty_lr::State<char, String>],
        state_stack: &[usize],
        nonterm: &String,
    ) -> Result<(), Self::Error> {
        Ok(())
    }
}
```

```rust
// Num + Num * ( Num + Num )
let terms = vec![ Term::Num, Term::Plus, Term::Num, Term::Mul, Term::LeftParen, Term::Num, Term::Plus, Term::Num, Term::RightParen, Term::Eof];

// start parsing
let mut context = parser.begin();
let mut callback = ParserCallback {};

// feed input sequence
for term in terms {
    match parser.feed_callback(&mut context, &mut callback, term) {
        Ok(_) => (),
        Err(err) => {
            eprintln!("{:?}", err);
            return;
        }
    }
}
```

The result will be:
```
Reduce by P -> Num
Reduce by M -> P
Reduce by A -> M
Reduce by P -> Num
Reduce by M -> P
Reduce by P -> Num
Reduce by M -> P
Reduce by A -> M
Reduce by P -> Num
Reduce by M -> P
Reduce by A -> M
Reduce by A -> A + A
Reduce by E -> A
Reduce by P -> ( E )
Reduce by M -> P
Reduce by M -> M * M
Reduce by A -> M
Reduce by A -> A + A
Reduce by E -> A
```

## proc-macro `lr1!` and `lalr1!`

`lr1!` and `lalr1!` are procedural macros that will build `Parser` struct from CFGs at compile time.
Please refer to the [Sample](#sample) section for actual usage.

Every line in the macro must follow the syntax below.

#### Token type <sub><sup>(must defined)</sup></sub>

```
'%tokentype' <RustType> ';'
```
Define the type of terminal symbols.
`<RustType>` must be accessible at the point where the macro is called.

#### Token definition <sub><sup>(must defined)</sup></sub>

```
'%token' <Ident> <RustExpr> ';'
```
Map terminal symbol's name `<Ident>` to the actual value `<RustExpr>`.
`<RustExpr>` must be accessible at the point where the macro is called.

#### Start symbol <sub><sup>(must defined)</sup></sub>

```
'%start' <Ident> ';'
```
Define the start symbol of the grammar.

#### Eof symbol <sub><sup>(must defined)</sup></sub>

```
'%eof' <RustExpr> ';'
```
Define the `eof` terminal symbol.
`<RustExpr>` must be accessible at the point where the macro is called.
'eof' terminal symbol will be automatically added to the grammar.

#### Userdata type <sub><sup>(optional)</sup></sub>

```
'%userdata' <RustType> ';'
```
Define the type of userdata passed to `feed()` function.

#### Reduce type <sub><sup>(optional)</sup></sub>

```
// reduce first
'%left' <Ident> ';'
'%l' <Ident> ';'
'%reduce' <Ident> ';'

// shift first
'%right' <Ident> ';'
'%r' <Ident> ';'
'%shift' <Ident> ';'
```
Set the shift/reduce precedence for terminal symbols. `<Ident>` must be defined in `%token`.

#### Production rules

```
<Ident><RuleType>
  ':' <Token>* <ReduceAction>
  '|' <Token>* <ReduceAction>
  ...
  ';'
```
Define the production rules.

```
<Token> : <Ident as Term or Non-Term>                                ... (1)
        | <Ident as variable name> '=' <Ident as Term or Non-Term>   ... (2)
        ;
```
For (1), `<Ident>` must be valid terminal or non-terminal symbols. In this case, the data of the token will be mapped to the variable with the same name as `<Ident>`.
For (2), the data of the token will be mapped to the variable on the left side of '='.
For more information about the token data and variable, refer to the [reduce action](#reduceaction) below.

#### RuleType <sub><sup>(optional)</sup></sub>

```
<RuleType> : '(' <RustType> ')'
           |
           ;
```
Define the type of value that this production rule holds.

#### ReduceAction

```
<ReduceAction> : '{' <RustExpr> '}'
               |
               ;
```
Define the action to be executed when the rule is matched and reduced.
If `<RuleType>` is defined, `<ReduceAction>` itself must be the value of `<RuleType>` (i.e. no semicolon at the end of the statement).

**predefined variables** can be used in `<ReduceAction>`:
 - `s` : slice of shifted terminal symbols `&[<TermType>]` captured by current rule.
 - `data` : userdata passed to `feed()` function.

To access the data of each token, you can directly use the name of the token as a variable.
For non-terminal symbols, the type of data is [`rusty_lr::NonTermData<'a, TermType, RuleType>`](rusty_lr/src/nontermdata.rs).
For terminal symbols, the type of data is [`rusty_lr::TermData<'a, TermType>`](rusty_lr/src/termdata.rs).
If multiple variables are defined with the same name, the variable on the front-most will be used.

For example, following code will print the value of each `A`, and the slice of each `A` and `plus` token in the production rule `E -> A plus A`.
```rust
%token plus ...;

E : A plus a2=A
  {
    println!("Value of 1st A: {}", A.value);  // A.value or *A
    println!("Slice of 1st A: {:?}", A.slice);
    println!("Value of 2nd A: {}", a2.value); // a2.value or *a2
    println!("Slice of 2nd A: {:?}", a2.slice);

    if let Token::Plus(plus) = *plus {
        println!( "Plus token: {:?}", plus );
    }
  }
  ;

A(i32): ... ;
```

`Result<(), String>` can be returned from `<ReduceAction>`.
Returned `Err` will be delivered to the caller of `feed()` function.

#### Error type <sub><sup>(optional)</sup></sub>

```
'%err' <RustType> ';'
'%error' <RustType> ';'
```
Define the type of `Err` variant in `Result<(), Err>` returned from `<ReduceAction>`. If not defined, `String` will be used.

## Start Parsing

`lr1!` and `lalr1!` will generate struct `<StartSymbol>Parser`.

The struct has the following functions:
 - `new()` : create new parser
 - `begin(&self)` : create new context
 - `feed(&self, &mut Context, TermType, &mut UserData) -> Result<(), ParseError>` : feed token to the parser
 - `feed_callback(&self, &mut Context, &mut C: Callback, TermType, &mut UserData) -> Result<(), ParseError>` : feed token with callback

Note that the parameter `&mut UserData` is omitted if `%userdata` is not defined.
Once the input sequence (including `eof` token) is feeded, without errors, you can get the value of start symbol by calling `context.accept()`.

```rust
let parser = parser::EParser::new();
// create context
let mut context = parser.begin();
// define userdata
let mut userdata: i32 = 0;

// start feeding tokens
for token in input_sequence {
    match parser.feed(&mut context, token, &mut userdata) {
        //                          ^^^^^   ^^^^^^^^^^^^ userdata passed here as `&mut i32`
        //                           |- feed token
        Ok(_) => {}
        Err(e) => {
            println!("{:?}", e);
            return;
        }
    }
}
// res = value of start symbol
let res = context.accept();
println!("{}", res);
println!("userdata: {}", userdata);
```