rusty_6502 0.1.0-alpha

A rusty 6502 emulator
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
#![allow(non_snake_case)]
use std::{fs::File, io::Write};

use crate::{
    asm::Instructions,
    debugger::{Debugger, MessageType},
    mem::MEM,
};

/// Status flags for the 6502
#[derive(Debug)]
pub struct StatusFlags {
    /// Negative flag
    pub N: u8,
    /// Overflow flag
    pub V: u8,
    #[allow(dead_code)]
    /// Unused flag
    pub U: u8,
    /// Interrupt flag
    pub I: u8,
    /// Break flag
    pub B: u8,
    /// Decimal mode flag
    pub D: u8,
    /// Zero flag
    pub Z: u8,
    /// Carry flag
    pub C: u8,
}

impl StatusFlags {
    /// Get processor status flags as a single byte
    pub fn get_ps(&self) -> u8 {
        self.N << 7
            | self.V << 6
            | self.I << 5
            | self.B << 4
            | self.D << 3
            | self.Z << 2
            | self.C << 1
    }
}

#[derive(PartialEq, Debug)]
/// Supervision mode for the CPU
pub enum Step {
    /// Disable Debugger
    Unsupervised,
    /// Enable Debugger
    Supervised,
}

#[allow(missing_debug_implementations)]
/// The 6502 CPU
pub struct CPU<E> {
    /// Program counter
    pub PC: u16,
    /// Status register
    pub SR: u8,
    /// Stack pointer
    pub SP: u16,

    /// Accumulator
    pub A: u8,
    /// X register
    pub X: u8,
    /// Y register
    pub Y: u8,

    /// Status flags
    pub status_flags: StatusFlags,
    /// Debugging option
    pub step: Step,
    /// Debugger bridge
    pub messenger: Debugger<E>,
}

impl<E> CPU<E>
where
    E: FnOnce(MessageType) + Copy + Sized,
{
    /// Create a new CPU
    /// ## Arguments
    /// * `debugger` - [`FnOnce(MessageType)`]
    /// ## Example
    /// ```
    /// use rusty_6502::cpu;
    /// 
    /// //Create CPU
    /// let mut cpu = cpu::CPU::new(&|_| {
    ///    //Optional debugger see [cpu::debugger](./src/cpu.rs#L50)
    /// });
    /// // Enable callbacks
    /// cpu.step = cpu::Step::Supervised;
    /// ```
    pub fn new(messenger: E) -> Self {
        CPU {
            PC: 600,
            SR: 0xFF,
            SP: 0xFF,
            status_flags: StatusFlags {
                N: 0,
                V: 0,
                U: 1,
                I: 0,
                B: 0,
                D: 0,
                Z: 0,
                C: 0,
            },
            A: 0,
            X: 0,
            Y: 0,
            step: Step::Unsupervised,
            messenger: Debugger::new(messenger),
        }
    }

    fn emit_debugger(&mut self, message_type: MessageType) {
        if self.step == Step::Supervised {
            (self.messenger.messenger)(message_type);
        }
    }

    /// Reset the CPU
    /// ## Arguments
    /// * `start_pc` - The start point of the program [`u16`]
    /// * `mem` - The memory space [`MEM`]
    pub fn reset(&mut self, pc: u16, mem: &mut MEM) {
        self.PC = pc;
        self.A = 0;
        self.X = 0;
        self.Y = 0;
        self.SR = 0xff;
        self.SP = 0xff;

        self.status_flags.N = 0;
        self.status_flags.V = 0;
        self.status_flags.I = 0;
        self.status_flags.B = 0;
        self.status_flags.D = 0;
        self.status_flags.Z = 0;
        self.status_flags.C = 0;
        mem.initalize();
    }

    /// Fetch byte from program
    /// ## Arguments
    /// * `cycles` - Cycle to reduce [`u32`]
    /// * `mem` - The memory space [`MEM`]
    /// ## Returns
    /// The fetched byte [`u8`]
    pub fn fetch_byte(&mut self, cycles: &mut u32, mem: &mut MEM) -> u8 {
        let data: u8 = mem[self.PC.into()];
        self.PC += 1;
        *cycles -= 1;
        data
    }

    /// Write byte to memory
    /// ## Arguments
    /// * `cycles` - Cycle to reduce [`u32`]
    /// * `mem` - The memory space [`MEM`]
    /// * `address` - The address to write to [`u16`]
    /// * `value` - The data to write [`u8`]
    pub fn write_byte(&mut self, cycles: &mut u32, mem: &mut MEM, address: u16, value: u8) {
        mem[address.into()] = value;
        *cycles -= 1;
    }

    /// Write word to memory
    /// ## Arguments
    /// * `cycles` - Cycle to reduce [`u32`]
    /// * `mem` - The memory space [`MEM`]
    /// * `address` - The address to write to [`u16`]
    /// * `value` - The data to write [`u16`]
    pub fn write_word(&mut self, cycles: &mut u32, mem: &mut MEM, address: u8, value: u16) {
        mem[address.into()] = (value as u8) & 0xff;
        mem[(address + 1).into()] = (value >> 8) as u8;
        *cycles -= 2;
    }

    /// Read byte from memory
    /// ## Arguments
    /// * `cycles` - Cycle to reduce [`u32`]
    /// * `mem` - The memory space [`MEM`]
    /// * `address` - The address to read from [`u16`]
    /// ## Returns
    /// The read byte [`u8`]
    pub fn read_byte(&mut self, cycles: &mut u32, mem: &mut MEM, address: u16) -> u8 {
        let data: u8 = mem[address.into()];
        *cycles -= 1;
        data
    }

    /// Read word from memory
    /// ## Arguments
    /// * `cycles` - Cycle to reduce [`u32`]
    /// * `mem` - The memory space [`MEM`]
    /// * `address` - The address to read from [`u16`]
    /// ## Returns
    /// The read word [`u16`]
    pub fn read_word(&mut self, cycles: &mut u32, mem: &mut MEM, address: u16) -> u16 {
        let high = self.read_byte(cycles, mem, address);
        let low = self.read_byte(cycles, mem, (address) + 1);
        (high as u16) << 8 | (low as u16)
    }

    /// Fetch word from program
    /// ## Arguments
    /// * `cycles` - Cycle to reduce [`u32`]
    /// * `mem` - The memory space [`MEM`]
    /// ## Returns
    /// The fetched word [`u16`]
    pub fn fetch_word(&mut self, cycles: &mut u32, mem: &mut MEM) -> u16 {
        let mut data: u16 = self.fetch_byte(cycles, mem) as u16;
        data |= (self.fetch_byte(cycles, mem) as u16) << 8;
        data
    }

    /// Push word to stack
    /// ## Arguments
    /// * `cycles` - Cycle to reduce [`u32`]
    /// * `mem` - The memory space [`MEM`]
    /// * `value` - The data to push [`u16`]
    pub fn push_word_to_stack(&mut self, cycles: &mut u32, mem: &mut MEM, value: u16) {
        self.write_byte(cycles, mem, 0x100 | self.SP, (value >> 8) as u8);
        self.SP -= 1;
        self.write_byte(cycles, mem, 0x100 | self.SP, (value & 0xff) as u8);
        self.SP -= 1;
    }

    /// Push byte to stack
    /// ## Arguments
    /// * `cycles` - Cycle to reduce [`u32`]
    /// * `mem` - The memory space [`MEM`]
    /// * `value` - The data to push [`u8`]
    pub fn push_byte_to_stack(&mut self, cycles: &mut u32, mem: &mut MEM, value: u8) {
        self.write_byte(cycles, mem, 0x100 | self.SP, value);
        self.SP -= 1;
    }

    /// Execute sized until cycles consumed
    /// ## Returns
    /// [`u16`] Ending location of the program counter
    pub fn execute_sized(&mut self, cycles: &mut u32, mem: &mut MEM) -> u16 {
        while cycles > &mut 0 {
            let (_, _, halted) = self.execute_instruction(&mut 9, mem);
            if halted {
                break;
            }
        }
        self.PC
    }

    /// Execute continuously until the CPU is halted.
    /// ## Returns
    /// (cycles: usize, ending_pc: u16)
    /// The number of cycles that were executed.
    /// Ending location of the program counter.
    pub fn execute_continuous(&mut self, mem: &mut MEM) -> (usize, u16) {
        let mut consumed_cycles: usize = 0;
        let mut last_pc = self.PC;
        loop {
            let (instruction, consumed, complete) = self.execute_instruction(&mut 9, mem);
            consumed_cycles += consumed as usize;
            self.emit_debugger(MessageType::LineExecuted(instruction, consumed));
            if complete {
                break;
            }
            last_pc = self.PC;
        }
        (consumed_cycles, last_pc)
    }

    fn execute_instruction(&mut self, cycles: &mut u32, mem: &mut MEM) -> (u8, u32, bool) {
        let old_cycles = cycles.clone();
        let instruction = self.fetch_byte(cycles, mem);
        let resolved_instruction = Instructions::resolve(instruction);
        let mut complete = false;
        match resolved_instruction {
            Instructions::LDX(address_mode) => {
                match address_mode {
                    crate::asm::AddrMode::Immediate(_) => {
                        let data = self.fetch_byte(cycles, mem);
                        self.X = data;
                    }
                    crate::asm::AddrMode::ZeroPage(_) => {
                        //Acquire the address
                        let memory_location = self.fetch_byte(cycles, mem);
                        //Read given address
                        self.X = self.read_byte(cycles, mem, memory_location.into());
                    }
                    crate::asm::AddrMode::ZeroPageY(_) => {
                        //Acquire the address
                        let mut memory_location = self.fetch_byte(cycles, mem);
                        memory_location += self.Y;
                        //Read given address
                        self.X = self.read_byte(cycles, mem, memory_location.into());
                        *cycles -= 1;
                    }
                    crate::asm::AddrMode::Absolute(_) => {
                        let address = self.fetch_word(cycles, mem);
                        self.X = self.read_byte(cycles, mem, address);
                    }
                    crate::asm::AddrMode::AbsoluteY(_) => {
                        let mut address = self.fetch_word(cycles, mem);
                        address += self.Y as u16;
                        self.X = self.read_byte(cycles, mem, address);
                    }
                    _ => panic!("Wrong addressing mode"),
                }
                //Set LDX status
                self.status_flags.Z = if self.X == 0 { 1 } else { 0 };
                self.status_flags.N = if (self.X & 0b10000000) > 0 { 1 } else { 0 };
            }
            Instructions::LDY(address_mode) => {
                match address_mode {
                    crate::asm::AddrMode::Immediate(_) => {
                        let data = self.fetch_byte(cycles, mem);
                        self.Y = data;
                    }
                    crate::asm::AddrMode::ZeroPage(_) => {
                        //Acquire the address
                        let memory_location = self.fetch_byte(cycles, mem);
                        //Read given address
                        self.Y = self.read_byte(cycles, mem, memory_location.into());
                    }
                    crate::asm::AddrMode::ZeroPageX(_) => {
                        //Acquire the address
                        let mut memory_location = self.fetch_byte(cycles, mem);
                        memory_location += self.X;
                        //Read given address
                        self.Y = self.read_byte(cycles, mem, memory_location.into());
                    }
                    crate::asm::AddrMode::Absolute(_) => {
                        let address = self.fetch_word(cycles, mem);
                        self.Y = self.read_byte(cycles, mem, address);
                    }
                    crate::asm::AddrMode::AbsoluteX(_) => {
                        let mut address = self.fetch_word(cycles, mem);
                        address += self.X as u16;
                        self.Y = self.read_byte(cycles, mem, address);
                    }
                    _ => panic!("Wrong addressing mode"),
                }
                //Set ldy status
                self.status_flags.Z = if self.Y == 0 { 1 } else { 0 };
                self.status_flags.N = if (self.Y & 0b10000000) > 0 { 1 } else { 0 };
            }
            Instructions::LDA(address_mode) => {
                match address_mode {
                    crate::asm::AddrMode::Immediate(_) => {
                        let data = self.fetch_byte(cycles, mem);
                        self.A = data;
                    }
                    crate::asm::AddrMode::ZeroPage(_) => {
                        //Acquire the address
                        let memory_location = self.fetch_byte(cycles, mem);
                        //Read given address
                        self.A = self.read_byte(cycles, mem, memory_location.into());
                    }
                    crate::asm::AddrMode::ZeroPageX(_) => {
                        //Acquire first parameter
                        let first_param = self.fetch_byte(cycles, mem);
                        //Read given address
                        self.A = self.read_byte(cycles, mem, (first_param + self.X).into());
                        *cycles -= 1;
                    }
                    crate::asm::AddrMode::Absolute(_) => {
                        let address = self.fetch_word(cycles, mem);
                        self.A = self.read_byte(cycles, mem, address);
                    }
                    crate::asm::AddrMode::AbsoluteX(_) => {
                        let mut address = self.fetch_word(cycles, mem);
                        address += self.X as u16;
                        self.A = self.read_byte(cycles, mem, address);
                    }
                    crate::asm::AddrMode::AbsoluteY(_) => {
                        let mut address = self.fetch_word(cycles, mem);
                        address += self.Y as u16;
                        self.A = self.read_byte(cycles, mem, address);
                    }
                    crate::asm::AddrMode::IndirectX(_) => {
                        let mut address = self.fetch_word(cycles, mem);
                        address += self.X as u16;
                        let low = self.read_byte(cycles, mem, address);
                        let high = self.read_byte(cycles, mem, address + 1);
                        let new_address = (high as u16) << 8 | (low as u16);
                        self.A = self.read_byte(cycles, mem, new_address);
                    }
                    crate::asm::AddrMode::IndirectY(_) => {
                        let address = self.fetch_word(cycles, mem);
                        let low = self.read_byte(cycles, mem, address);
                        let high = self.read_byte(cycles, mem, address + 1);
                        let new_address = (high as u16) << 8 | (low as u16);
                        self.A = self.read_byte(cycles, mem, new_address + (self.Y as u16));
                    }
                    _ => panic!("Unimplemented addressing mode"),
                }
                //Set lda status
                self.status_flags.Z = if self.A == 0 { 1 } else { 0 };
                self.status_flags.N = if (self.A & 0b10000000) > 0 { 1 } else { 0 };
            }
            Instructions::STA(address_mode) => match address_mode {
                crate::asm::AddrMode::ZeroPage(_) => {
                    let address = self.fetch_byte(cycles, mem);
                    self.write_byte(cycles, mem, address as u16, self.A);
                }
                crate::asm::AddrMode::ZeroPageX(_) => {
                    let mut address = self.fetch_byte(cycles, mem);
                    address += self.X;
                    self.write_byte(cycles, mem, address as u16, self.A);
                }
                crate::asm::AddrMode::Absolute(_) => {
                    let address = self.fetch_word(cycles, mem);
                    self.write_byte(cycles, mem, address, self.A)
                }
                crate::asm::AddrMode::AbsoluteX(_) => {
                    let mut address = self.fetch_word(cycles, mem);
                    address += self.X as u16;
                    self.write_byte(cycles, mem, address, self.A);
                }
                crate::asm::AddrMode::AbsoluteY(_) => {
                    let mut address = self.fetch_word(cycles, mem);
                    address += self.Y as u16;
                    self.write_byte(cycles, mem, address, self.A);
                }
                crate::asm::AddrMode::IndirectX(_) => {
                    let mut address = self.fetch_word(cycles, mem);
                    address += self.X as u16;
                    let low = self.read_byte(cycles, mem, address);
                    let high = self.read_byte(cycles, mem, address + 1);
                    let new_address = (high as u16) << 8 | (low as u16);
                    self.write_byte(cycles, mem, new_address, self.A);
                }
                crate::asm::AddrMode::IndirectY(_) => {
                    let address = self.fetch_word(cycles, mem);
                    let low = self.read_byte(cycles, mem, address);
                    let high = self.read_byte(cycles, mem, address + 1);
                    let new_address = (high as u16) << 8 | (low as u16);
                    self.write_byte(cycles, mem, new_address + (self.Y as u16), self.A);
                }
                _ => panic!("Unimplemented addressing mode, {:?}", address_mode),
            },
            Instructions::STX(address_mode) => match address_mode {
                crate::asm::AddrMode::ZeroPage(_) => {
                    let address = self.fetch_byte(cycles, mem);
                    self.write_byte(cycles, mem, address as u16, self.X);
                }
                crate::asm::AddrMode::ZeroPageY(_) => {
                    let mut address = self.fetch_byte(cycles, mem);
                    address += self.Y;
                    self.write_byte(cycles, mem, address as u16, self.X);
                    *cycles -= 1;
                }
                crate::asm::AddrMode::Absolute(_) => {
                    let address = self.fetch_word(cycles, mem);
                    self.write_byte(cycles, mem, address as u16, self.X);
                }
                _ => panic!("Unsupported addressing mode"),
            },
            Instructions::STY(address_mode) => match address_mode {
                crate::asm::AddrMode::ZeroPage(_) => {
                    let address = self.fetch_byte(cycles, mem);
                    self.write_byte(cycles, mem, address as u16, self.Y);
                }
                crate::asm::AddrMode::ZeroPageX(_) => {
                    let mut address = self.fetch_byte(cycles, mem);
                    address += self.X;
                    self.write_byte(cycles, mem, address as u16, self.Y);
                }
                crate::asm::AddrMode::Absolute(_) => {
                    let address = self.fetch_word(cycles, mem);
                    self.write_byte(cycles, mem, address as u16, self.Y);
                }
                _ => panic!("Unsupported addressing mode"),
            },
            Instructions::DEY(address_mode) => match address_mode {
                crate::asm::AddrMode::Implied(_) => {
                    self.status_flags.Z = if self.Y == 0 { 1 } else { 0 };
                    self.status_flags.N = if (self.Y & 0b10000000) > 0 { 1 } else { 0 };
                    *cycles -= 1;
                }
                _ => panic!("Unsupported addressing mode"),
            },
            Instructions::BRK(address_mode) => match address_mode {
                crate::asm::AddrMode::Implied(_) => {
                    self.status_flags.I = 1;
                    self.push_word_to_stack(cycles, mem, self.PC + 2);
                    self.push_byte_to_stack(cycles, mem, self.SR);
                    //self.push_byte_to_stack(cycles, mem, self.status_flags.get_ps());
                    self.PC = self.read_word(cycles, mem, 0xFFFE);
                    self.status_flags.B = 1;
                    *cycles -= 1; //??
                    complete = true;
                }
                _ => panic!("Unsupported addressing mode"),
            },
            _ => {
                File::create("mem.dump")
                    .unwrap()
                    .write_all(&mem.data)
                    .unwrap();
                unimplemented!(
                    "Unimplemented instruction at {:02x}; {:02X} : {}",
                    cycles,
                    instruction,
                    resolved_instruction
                )
            }
        }
        (instruction, old_cycles - *cycles, complete)
    }
}