1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
use malachite_bigint::BigInt;
use num_traits::ToPrimitive;
use siphasher::sip::SipHasher24;
use std::hash::{BuildHasher, Hash, Hasher};

pub type PyHash = i64;
pub type PyUHash = u64;

/// A PyHash value used to represent a missing hash value, e.g. means "not yet computed" for
/// `str`'s hash cache
pub const SENTINEL: PyHash = -1;

/// Prime multiplier used in string and various other hashes.
pub const MULTIPLIER: PyHash = 1_000_003; // 0xf4243
/// Numeric hashes are based on reduction modulo the prime 2**_BITS - 1
pub const BITS: usize = 61;
pub const MODULUS: PyUHash = (1 << BITS) - 1;
pub const INF: PyHash = 314_159;
pub const NAN: PyHash = 0;
pub const IMAG: PyHash = MULTIPLIER;
pub const ALGO: &str = "siphash24";
pub const HASH_BITS: usize = std::mem::size_of::<PyHash>() * 8;
// SipHasher24 takes 2 u64s as a seed
pub const SEED_BITS: usize = std::mem::size_of::<u64>() * 2 * 8;

// pub const CUTOFF: usize = 7;

pub struct HashSecret {
    k0: u64,
    k1: u64,
}

impl BuildHasher for HashSecret {
    type Hasher = SipHasher24;
    fn build_hasher(&self) -> Self::Hasher {
        SipHasher24::new_with_keys(self.k0, self.k1)
    }
}

impl rand::distributions::Distribution<HashSecret> for rand::distributions::Standard {
    fn sample<R: rand::Rng + ?Sized>(&self, rng: &mut R) -> HashSecret {
        HashSecret {
            k0: rng.gen(),
            k1: rng.gen(),
        }
    }
}

impl HashSecret {
    pub fn new(seed: u32) -> Self {
        let mut buf = [0u8; 16];
        lcg_urandom(seed, &mut buf);
        let (left, right) = buf.split_at(8);
        let k0 = u64::from_le_bytes(left.try_into().unwrap());
        let k1 = u64::from_le_bytes(right.try_into().unwrap());
        Self { k0, k1 }
    }
}

impl HashSecret {
    pub fn hash_value<T: Hash + ?Sized>(&self, data: &T) -> PyHash {
        let mut hasher = self.build_hasher();
        data.hash(&mut hasher);
        fix_sentinel(mod_int(hasher.finish() as PyHash))
    }

    pub fn hash_iter<'a, T: 'a, I, F, E>(&self, iter: I, hashf: F) -> Result<PyHash, E>
    where
        I: IntoIterator<Item = &'a T>,
        F: Fn(&'a T) -> Result<PyHash, E>,
    {
        let mut hasher = self.build_hasher();
        for element in iter {
            let item_hash = hashf(element)?;
            item_hash.hash(&mut hasher);
        }
        Ok(fix_sentinel(mod_int(hasher.finish() as PyHash)))
    }

    pub fn hash_bytes(&self, value: &[u8]) -> PyHash {
        if value.is_empty() {
            0
        } else {
            self.hash_value(value)
        }
    }

    pub fn hash_str(&self, value: &str) -> PyHash {
        self.hash_bytes(value.as_bytes())
    }
}

#[inline]
pub fn hash_float(value: f64) -> Option<PyHash> {
    // cpython _Py_HashDouble
    if !value.is_finite() {
        return if value.is_infinite() {
            Some(if value > 0.0 { INF } else { -INF })
        } else {
            None
        };
    }

    let frexp = super::float_ops::ufrexp(value);

    // process 28 bits at a time;  this should work well both for binary
    // and hexadecimal floating point.
    let mut m = frexp.0;
    let mut e = frexp.1;
    let mut x: PyUHash = 0;
    while m != 0.0 {
        x = ((x << 28) & MODULUS) | x >> (BITS - 28);
        m *= 268_435_456.0; // 2**28
        e -= 28;
        let y = m as PyUHash; // pull out integer part
        m -= y as f64;
        x += y;
        if x >= MODULUS {
            x -= MODULUS;
        }
    }

    // adjust for the exponent;  first reduce it modulo BITS
    const BITS32: i32 = BITS as i32;
    e = if e >= 0 {
        e % BITS32
    } else {
        BITS32 - 1 - ((-1 - e) % BITS32)
    };
    x = ((x << e) & MODULUS) | x >> (BITS32 - e);

    Some(fix_sentinel(x as PyHash * value.signum() as PyHash))
}

pub fn hash_iter_unordered<'a, T: 'a, I, F, E>(iter: I, hashf: F) -> Result<PyHash, E>
where
    I: IntoIterator<Item = &'a T>,
    F: Fn(&'a T) -> Result<PyHash, E>,
{
    let mut hash: PyHash = 0;
    for element in iter {
        let item_hash = hashf(element)?;
        // xor is commutative and hash should be independent of order
        hash ^= item_hash;
    }
    Ok(fix_sentinel(mod_int(hash)))
}

pub fn hash_bigint(value: &BigInt) -> PyHash {
    let ret = match value.to_i64() {
        Some(i) => mod_int(i),
        None => (value % MODULUS).to_i64().unwrap_or_else(|| unsafe {
            // SAFETY: MODULUS < i64::MAX, so value % MODULUS is guaranteed to be in the range of i64
            std::hint::unreachable_unchecked()
        }),
    };
    fix_sentinel(ret)
}

#[inline(always)]
pub fn fix_sentinel(x: PyHash) -> PyHash {
    if x == SENTINEL {
        -2
    } else {
        x
    }
}

#[inline]
pub fn mod_int(value: i64) -> PyHash {
    value % MODULUS as i64
}

pub fn lcg_urandom(mut x: u32, buf: &mut [u8]) {
    for b in buf {
        x = x.wrapping_mul(214013);
        x = x.wrapping_add(2531011);
        *b = ((x >> 16) & 0xff) as u8;
    }
}

#[inline]
pub fn hash_object_id_raw(p: usize) -> PyHash {
    // TODO: Use commented logic when below issue resolved.
    // Ref: https://github.com/RustPython/RustPython/pull/3951#issuecomment-1193108966

    /* bottom 3 or 4 bits are likely to be 0; rotate y by 4 to avoid
    excessive hash collisions for dicts and sets */
    // p.rotate_right(4) as PyHash
    p as PyHash
}

#[inline]
pub fn hash_object_id(p: usize) -> PyHash {
    fix_sentinel(hash_object_id_raw(p))
}

pub fn keyed_hash(key: u64, buf: &[u8]) -> u64 {
    let mut hasher = SipHasher24::new_with_keys(key, 0);
    buf.hash(&mut hasher);
    hasher.finish()
}