RustKernel Statistical ML
GPU-accelerated machine learning kernels for clustering, anomaly detection, and regression.
Kernels
Clustering (3 kernels)
KMeans- Lloyd's algorithm with K-Means++ initializationDBSCAN- Density-based clustering with GPU union-findHierarchicalClustering- Agglomerative clustering
Anomaly Detection (2 kernels)
IsolationForest- Ensemble of isolation treesLocalOutlierFactor- k-NN density estimation
Streaming Anomaly Detection (2 kernels)
StreamingIsolationForest- Online anomaly detection with sliding windowAdaptiveThreshold- Self-adjusting thresholds with drift detection
Ensemble (1 kernel)
EnsembleVoting- Weighted majority voting
Regression (2 kernels)
LinearRegression- OLS via normal equationsRidgeRegression- L2 regularization
Explainability (2 kernels)
SHAPValues- Kernel SHAP for feature explanationsFeatureImportance- Permutation-based feature importance
NLP / LLM Integration (2 kernels)
EmbeddingGeneration- Text embedding via hash-based featuresSemanticSimilarity- Multi-metric semantic similarity
Federated Learning (1 kernel)
SecureAggregation- Privacy-preserving model aggregation
Healthcare Analytics (2 kernels)
DrugInteractionPrediction- Multi-drug interaction predictionClinicalPathwayConformance- Treatment guideline checking