rustkernel-ml 0.1.0

Statistical ML kernels: clustering, anomaly detection, regression
Documentation

RustKernel Statistical ML

GPU-accelerated machine learning kernels for clustering, anomaly detection, and regression.

Kernels

Clustering (3 kernels)

  • KMeans - Lloyd's algorithm with K-Means++ initialization
  • DBSCAN - Density-based clustering with GPU union-find
  • HierarchicalClustering - Agglomerative clustering

Anomaly Detection (2 kernels)

  • IsolationForest - Ensemble of isolation trees
  • LocalOutlierFactor - k-NN density estimation

Streaming Anomaly Detection (2 kernels)

  • StreamingIsolationForest - Online anomaly detection with sliding window
  • AdaptiveThreshold - Self-adjusting thresholds with drift detection

Ensemble (1 kernel)

  • EnsembleVoting - Weighted majority voting

Regression (2 kernels)

  • LinearRegression - OLS via normal equations
  • RidgeRegression - L2 regularization

Explainability (2 kernels)

  • SHAPValues - Kernel SHAP for feature explanations
  • FeatureImportance - Permutation-based feature importance

NLP / LLM Integration (2 kernels)

  • EmbeddingGeneration - Text embedding via hash-based features
  • SemanticSimilarity - Multi-metric semantic similarity

Federated Learning (1 kernel)

  • SecureAggregation - Privacy-preserving model aggregation

Healthcare Analytics (2 kernels)

  • DrugInteractionPrediction - Multi-drug interaction prediction
  • ClinicalPathwayConformance - Treatment guideline checking