rustkernel-graph 0.1.0

Graph analytics kernels: centrality, community detection, motifs, similarity
Documentation

RustKernel Graph Analytics

GPU-accelerated graph analytics kernels including centrality measures, community detection, motif analysis, similarity metrics, and AML-focused analytics.

Kernels

Centrality (6 kernels)

  • DegreeCentrality - Ring kernel, O(1) query
  • BetweennessCentrality - Ring kernel, Brandes algorithm
  • ClosenessCentrality - Ring kernel, BFS-based
  • EigenvectorCentrality - Ring kernel, power iteration
  • PageRank - Ring kernel, power iteration with teleport
  • KatzCentrality - Ring kernel, attenuated paths

Community Detection (3 kernels)

  • ModularityScore - Batch kernel
  • LouvainCommunity - Batch kernel, multi-level optimization
  • LabelPropagation - Batch kernel

Motif Detection (3 kernels)

  • TriangleCounting - Ring kernel
  • MotifDetection - Batch kernel, k-node subgraph census
  • KCliqueDetection - Batch kernel

Similarity (5 kernels)

  • JaccardSimilarity - Batch kernel
  • CosineSimilarity - Batch kernel
  • AdamicAdarIndex - Batch kernel
  • CommonNeighbors - Batch kernel
  • ValueSimilarity - Batch kernel (JSD/Wasserstein)

Metrics (5 kernels)

  • GraphDensity - Batch kernel
  • AveragePathLength - Batch kernel
  • ClusteringCoefficient - Batch kernel
  • ConnectedComponents - Batch kernel
  • FullGraphMetrics - Batch kernel

Topology (2 kernels)

  • DegreeRatio - Ring kernel, source/sink classification
  • StarTopologyScore - Batch kernel, hub-and-spoke detection

Cycles (1 kernel)

  • ShortCycleParticipation - Batch kernel, 2-4 hop cycle detection (AML)

Paths (1 kernel)

  • ShortestPath - Batch kernel, BFS/Delta-Stepping SSSP/APSP

Graph Neural Networks (2 kernels)

  • GNNInference - Message passing neural network inference
  • GraphAttention - Graph Attention Network (GAT) with multi-head attention