RustKernel Graph Analytics
GPU-accelerated graph analytics kernels including centrality measures, community detection, motif analysis, similarity metrics, and AML-focused analytics.
Kernels
Centrality (6 kernels)
DegreeCentrality- Ring kernel, O(1) queryBetweennessCentrality- Ring kernel, Brandes algorithmClosenessCentrality- Ring kernel, BFS-basedEigenvectorCentrality- Ring kernel, power iterationPageRank- Ring kernel, power iteration with teleportKatzCentrality- Ring kernel, attenuated paths
Community Detection (3 kernels)
ModularityScore- Batch kernelLouvainCommunity- Batch kernel, multi-level optimizationLabelPropagation- Batch kernel
Motif Detection (3 kernels)
TriangleCounting- Ring kernelMotifDetection- Batch kernel, k-node subgraph censusKCliqueDetection- Batch kernel
Similarity (5 kernels)
JaccardSimilarity- Batch kernelCosineSimilarity- Batch kernelAdamicAdarIndex- Batch kernelCommonNeighbors- Batch kernelValueSimilarity- Batch kernel (JSD/Wasserstein)
Metrics (5 kernels)
GraphDensity- Batch kernelAveragePathLength- Batch kernelClusteringCoefficient- Batch kernelConnectedComponents- Batch kernelFullGraphMetrics- Batch kernel
Topology (2 kernels)
DegreeRatio- Ring kernel, source/sink classificationStarTopologyScore- Batch kernel, hub-and-spoke detection
Cycles (1 kernel)
ShortCycleParticipation- Batch kernel, 2-4 hop cycle detection (AML)
Paths (1 kernel)
ShortestPath- Batch kernel, BFS/Delta-Stepping SSSP/APSP
Graph Neural Networks (2 kernels)
GNNInference- Message passing neural network inferenceGraphAttention- Graph Attention Network (GAT) with multi-head attention