rustics 1.0.3

simple statistic library for performance analysis
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
//
//  Copyright 2024 Jonathan L Bertoni
//
//  This code is available under the Berkeley 2-Clause, Berkeley 3-clause,
//  and MIT licenses.
//

//! ## Type
//!
//! * RunningInteger
//!     * RunningInteger maintains running statistics on a set of samples
//!       recorded into it.
//!
//!     * The main.rs program contains a simple example of using this type.
//!
//! ## Example
//!```
//!    use rustics::Rustics;
//!    use rustics::Histogram;
//!    use rustics::PrintOpts;
//!    use rustics::Units;
//!    use rustics::printer_mut;
//!    use rustics::stdout_printer;
//!    use rustics::running_integer::RunningInteger;
//!
//!    // Create an instance to record packet sizes. Set some print
//!    // options as an example.  Only float histograms have options,
//!    // so that field can be None.
//!
//!    let printer    = Some(stdout_printer());
//!    let title      = Some("Network Packet Sizes".to_string());
//!    let units      = Some(Units::new("byte", "bytes"));
//!    let histo_opts = None;
//!
//!    let print_opts = PrintOpts { printer, title, units, histo_opts };
//!
//!    let mut packet_sizes =
//!        RunningInteger::new("Packet Sizes", &Some(print_opts));
//!
//!    // Record some hypothetical packet sizes.
//!
//!    let sample_count = 1000;
//!
//!    for i in 1..=sample_count {
//!       packet_sizes.record_i64(i);
//!       assert!(packet_sizes.count() == i as u64);
//!    }
//!
//!    // Print our statistics.
//!
//!    packet_sizes.print();
//!
//!    // Print just the histogram.  This example shows how the printer
//!    // code works.
//!
//!    let printer = stdout_printer();      // create a shareable printer
//!    let printer = printer_mut!(printer); // get the printer out of the cell
//!
//!    packet_sizes.print_histogram(printer);
//!
//!    // We should have seen "sample_count" events.
//!
//!    assert!(packet_sizes.count() == sample_count as u64);
//!
//!    // Compute the expected mean.  We need the sum of
//!    //     1 + 2 + ... + n
//!    // which is
//!    //     n * (n + 1) / 2.
//!
//!    let float_count = sample_count as f64;
//!    let float_sum   = float_count * (float_count + 1.0) / 2.0;
//!    let mean        = float_sum / float_count;
//!
//!    assert!(packet_sizes.mean() == mean);
//!
//!    // Let's record more samples, and verify the sample count as we go.
//!
//!    let next_sample_count = 100;
//!
//!    for i in 1..=next_sample_count {
//!       packet_sizes.record_i64(i + sample_count);
//!       assert!(packet_sizes.count() == (sample_count + i) as u64);
//!    }
//!
//!    // Sample Output
//!
//!    //        Network Packet Sizes
//!    //            Count               1,000
//!    //            Minimum                 1 byte
//!    //            Maximum             1,000 bytes
//!    //            Log Mode               10
//!    //            Mode Value            768 bytes
//!    //            Mean             +5.00500 e+2  bytes
//!    //            Std Dev          +2.88819 e+2  bytes
//!    //            Variance         +8.34166 e+4
//!    //            Skewness         -4.16317 e-11
//!    //            Kurtosis         -1.19999 e+0
//!    //          Log Histogram
//!    //          -----------------------
//!    //            0:                 1                 1                 2                 4
//!    //            4:                 8                16                32                64
//!    //            8:               128               256               488                 0
//!
//!    // The mode value and histogram both show the most common bucket
//!    // is the range from 513 to 1,024 bytes, which is consistent with
//!    // the samples recorded.
//!```

use std::any::Any;
use std::rc::Rc;
use std::cell::RefCell;
use std::cmp::min;
use std::cmp::max;

use super::Rustics;
use super::Histogram;
use super::TimerBox;
use super::Printer;
use super::ExportStats;
use super::PrinterBox;
use super::PrinterOption;
use super::PrintOption;
use super::LogHistogramBox;
use super::FloatHistogramBox;
use super::Units;
use super::printer_mut;
use super::printable::Printable;
use super::EstimateData;
use super::estimate_moment_3;
use super::compute_variance;
use super::compute_skewness;
use super::compute_kurtosis;
use super::merge::Export;
use super::merge::sum_running;

use crate::hier::HierExporter;
use crate::LogHistogram;

use super::parse_print_opts;

/// RunningInteger provides basic statistics on a
/// stream of integer data samples.
///
/// See the module comments for a sample program.

#[derive(Clone)]
pub struct RunningInteger {
    name:       String,
    title:      String,
    id:         usize,

    count:      u64,
    mean:       f64,
    moment_2:   f64,
    cubes:      f64,
    moment_4:   f64,

    min:        i64,
    max:        i64,

    histogram:  LogHistogramBox,

    printer:    PrinterBox,
    units:      Units,
}

// IntegerExporter instances are used to export statistics from a
// RunningInteger instance so that multiple RunningInteger instances
// can be summed.  This is used by IntegerHier to allow the Hier
// code to use RunningInteger instance.  The RunningTime code uses
// a RunningInteger instance underneath a wrapper, so TimeHier uses
// this code, as well.

/// IntegerExport is used by a Hier instance to make summations of
/// multiple RunningInteger instances.

#[derive(Clone, Default)]
pub struct IntegerExporter {
    addends: Vec<Export>,
}

/// IntegerExporter is used to sum a list of RunningInteger instances.

impl IntegerExporter {
    /// Creates a new IntegerExporter instance.

    pub fn new() -> IntegerExporter {
        let addends = Vec::new();

        IntegerExporter { addends }
    }

    /// Pushes a Rustics instance onto the list of instances to
    /// be summed.

    pub fn push(&mut self, addend: Export) {
        self.addends.push(addend);
    }

    /// Makes a Rustics instance based on the summed exports.

    pub fn make_member(&mut self, name: &str, print_opts: &PrintOption) -> RunningInteger {
        let title = name;
        let sum   = sum_running(&self.addends);

        RunningInteger::new_from_exporter(name, title, print_opts, sum)
    }

    // For testing

    #[cfg(test)]
    pub fn count(&self) -> usize {
        self.addends.len()
    }
}

// The Hier code uses this trait to do summation of statistics.
//
// We just need downcasting capabilities since all the work
// is implementation-specific.

impl HierExporter for IntegerExporter {
    fn as_any(&self) -> &dyn Any {
        self
    }

    fn as_any_mut(&mut self) -> &mut dyn Any {
        self
    }
}

impl RunningInteger {
    /// Creates a new RunningInteger instance with the given name and
    /// an optional set of print options.

    pub fn new(name: &str, print_opts: &PrintOption) -> RunningInteger {
        let (printer, title, units, _histo_opts) = parse_print_opts(print_opts, name);

        let name      = name.to_string();
        let id        = usize::MAX;
        let count     = 0;
        let mean      = 0.0;
        let moment_2  = 0.0;
        let cubes     = 0.0;
        let moment_4  = 0.0;
        let min       = i64::MAX;
        let max       = i64::MIN;
        let histogram = LogHistogram::new();
        let histogram = Rc::from(RefCell::new(histogram));

        RunningInteger {
            name,       title,      id,
            count,      mean,       moment_2,
            cubes,      moment_4,   histogram,
            min,        max,        printer,
            units
        }
    }

    /// Creates a RunningInteger instance by summing data from
    /// a list of instances.

    pub fn new_from_exporter(name: &str, title: &str, print_opts: &PrintOption, import: Export)
            -> RunningInteger {
        let (printer, _title, units, _histo_opts) = parse_print_opts(print_opts, name);

        let name      = String::from(name);
        let title     = title.to_string();
        let id        = usize::MAX;
        let count     = import.count;
        let mean      = import.mean;
        let moment_2  = import.moment_2;
        let cubes     = import.cubes;
        let moment_4  = import.moment_4;
        let min       = import.min_i64;
        let max       = import.max_i64;
        let histogram = import.log_histogram.unwrap();

        RunningInteger {
            name,       title,      id,
            count,      mean,       moment_2,
            cubes,      moment_4,   histogram,
            min,        max,        printer,
            units
        }
    }

    /// Exports all the statistics kept for a given instance to
    /// be used to create a sum of many instances.

    pub fn export_data(&self) -> Export {
        let count           = self.count;
        let nans            = 0;
        let infinities      = 0;
        let mean            = self.mean;
        let moment_2        = self.moment_2;
        let cubes           = self.cubes;
        let moment_4        = self.moment_4;
        let log_histogram   = Some(self.histogram.clone());
        let float_histogram = None;
        let min_i64         = self.min;
        let max_i64         = self.max;
        let min_f64         = 0.0;
        let max_f64         = 0.0;

        Export {
            count,           nans,        infinities,
            mean,            moment_2,    cubes,
            moment_4,        min_i64,     max_i64,
            min_f64,         max_f64,     log_histogram,
            float_histogram
        }
    }

    pub fn set_units(&mut self, units: Units) {
        self.units = units;
    }

    pub fn get_printable(&self) -> Printable {
        let n           = self.count;
        let nans        = 0;
        let infinities  = 0;
        let min_i64     = self.min;
        let max_i64     = self.max;
        let min_f64     = f64::MIN;
        let max_f64     = f64::MAX;
        let log_mode    = self.histogram.borrow().log_mode() as i64;
        let mode_value  = 0.0;
        let mean        = self.mean;
        let variance    = self.variance();
        let skewness    = self.skewness();
        let kurtosis    = self.kurtosis();
        let units       = self.units.clone();

        Printable {
            n,         nans,  infinities,  min_i64,   max_i64,   min_f64,     max_f64,
            log_mode,  mean,  variance,    skewness,  kurtosis,  mode_value,  units
        }
    }
}

// The formula for computing the second moment for the variance (moment_2)
// is from D. E. Knuth, The Art of Computer Programming.

impl Rustics for RunningInteger {
    fn record_i64(&mut self, sample: i64) {
        self.count += 1;

        self.histogram.borrow_mut().record(sample);

        let sample_f64 = sample as f64;

        if self.count == 1 {
            self.mean     = sample_f64;
            self.moment_2 = 0.0;
            self.cubes    = 0.0;
            self.moment_4 = 0.0;
            self.min      = sample;
            self.max      = sample;
        } else {
            let distance_mean     = sample_f64 - self.mean;
            let new_mean          = self.mean + (distance_mean / self.count as f64);
            let distance_new_mean = sample_f64 - new_mean;
            let square_estimate   = (distance_mean * distance_new_mean).abs();
            let new_moment_2      = self.moment_2 + square_estimate;
            let new_cubes         = self.cubes + sample_f64.powi(3);
            let new_moment_4      = self.moment_4 + square_estimate * square_estimate;

            self.mean             = new_mean;
            self.moment_2         = new_moment_2;
            self.cubes            = new_cubes;
            self.moment_4         = new_moment_4;
            self.min              = min(self.min, sample);
            self.max              = max(self.max, sample);
        }
    }

    fn record_f64(&mut self, _sample: f64) {
        panic!("Rustics::RunningInteger:  f64 samples are not permitted.");
    }

    fn record_event(&mut self) {
        panic!("Rustics::RunningInteger:  event samples are not permitted.");
    }

    fn record_event_report(&mut self) -> i64 {
        panic!("Rustics::RunningInteger:  event samples are not permitted.");
    }

    fn record_time(&mut self, _sample: i64) {
        panic!("Rustics::RunningInteger:  time samples are not permitted.");
    }

    fn record_interval(&mut self, _timer: &mut TimerBox) {
        panic!("Rustics::RunningInteger:  time intervals are not permitted.");
    }

    fn name(&self) -> String {
        self.name.clone()
    }

    fn title(&self) -> String {
        self.title.clone()
    }

    fn class(&self) -> &str {
        "integer"
    }

    fn count(&self) -> u64 {
        self.count
    }

    fn log_mode(&self) -> isize {
        self.histogram.borrow().log_mode()
    }

    fn mean(&self) -> f64 {
        self.mean
    }

    fn standard_deviation(&self) -> f64 {
        self.variance().sqrt()
    }

    fn variance(&self) -> f64 {
        compute_variance(self.count, self.moment_2)
    }

    fn skewness(&self) -> f64 {
        let n        = self.count as f64;
        let mean     = self.mean;
        let moment_2 = self.moment_2;
        let cubes    = self.cubes;
        let data     = EstimateData { n, mean, moment_2, cubes };

        let moment_3 = estimate_moment_3(data);

        compute_skewness(self.count, self.moment_2, moment_3)
    }

    fn kurtosis(&self) -> f64 {
        compute_kurtosis(self.count, self.moment_2, self.moment_4)
    }

    fn precompute(&mut self) {
    }

    fn int_extremes(&self) -> bool {
        true
    }

    fn float_extremes(&self) -> bool {
        false
    }

    fn min_i64(&self) -> i64 {
        self.min
    }

    fn max_i64(&self) -> i64 {
        self.max
    }

    fn min_f64(&self) -> f64 {
        panic!("RunningInteger:: min_f64 is not supported.");
    }

    fn max_f64(&self) -> f64 {
        panic!("RunningInteger:: max_f64 is not supported.");
    }

    fn clear(&mut self) {
        self.count    = 0;
        self.mean     = 0.0;
        self.moment_2 = 0.0;
        self.cubes    = 0.0;
        self.moment_4 = 0.0;
        self.min      = i64::MAX;
        self.max      = i64::MIN;

        self.histogram.borrow_mut().clear();
    }

    fn log_histogram(&self) -> Option<LogHistogramBox> {
        Some(self.histogram.clone())
    }

    fn float_histogram(&self) -> Option<FloatHistogramBox> {
        None
    }

    fn print(&self) {
        self.print_opts(None, None);
    }

    fn print_opts(&self, printer: PrinterOption, title: Option<&str>) {
        let printer_box =
            if let Some(printer) = printer {
                printer.clone()
            } else {
                self.printer.clone()
            };

        let title =
            if let Some(title) = title {
                title
            } else {
                &self.title
            };

        let printable = self.get_printable();
        let printer   = printer_mut!(printer_box);

        printer.print(title);
        printable.print_common_i64(printer);
        printable.print_common_float(printer);
        self.histogram.borrow().print(printer);
        printer.print("");
    }

    fn set_title(&mut self, title: &str) {
        self.title = String::from(title)
    }

    // For internal use

    fn equals(&self, other: &dyn Rustics) -> bool {
        if let Some(other) = <dyn Any>::downcast_ref::<RunningInteger>(other.generic()) {
            std::ptr::eq(self, other)
        } else {
            false
        }
    }

    fn generic(&self) -> &dyn Any {
        self as &dyn Any
    }

    fn set_id(&mut self, id: usize) {
        self.id = id;
    }

    fn id(&self) -> usize {
        self.id
    }

    fn export_stats(&self) -> ExportStats {
        let printable       = self.get_printable();
        let log_histogram   = Some(self.histogram.clone());
        let float_histogram = None;

        ExportStats { printable, log_histogram, float_histogram }
    }
}

impl Histogram for RunningInteger {
    fn print_histogram(&self, printer: &mut dyn Printer) {
        self.histogram.borrow().print(printer);
    }

    fn clear_histogram(&mut self) {
        self.histogram.borrow_mut().clear();
    }

    fn to_log_histogram(&self) -> Option<LogHistogramBox> {
        Some(self.histogram.clone())
    }

    fn to_float_histogram(&self) -> Option<FloatHistogramBox> {
        None
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::PrintOpts;
    use crate::stdout_printer;
    use crate::counter::Counter;
    use crate::hier::HierMember;
    use crate::tests::continuing_box;
    use crate::tests::bytes;
    use crate::tests::check_printer_box;

    pub fn test_simple_stat() {
        let     printer    = None;
        let     title      = None;
        let     units      = bytes();
        let     histo_opts = None;
        let     print_opts = Some(PrintOpts { printer, title, units, histo_opts });

        let     name       = "Test Statistics";
        let     id         = 42;
        let mut stats      = RunningInteger::new(&name, &print_opts);
        let     title      = "Test Title";
        let mut events     =    0;
        let     min        = -256;
        let     max        =  511;

        assert!(stats.name()  == name      );
        assert!(stats.title() == name      );
        assert!(stats.class() == "integer" );
        assert!(stats.id()    == usize::MAX);

        assert!( stats.int_extremes  ());
        assert!(!stats.float_extremes());

        assert!(stats.equals(&stats));
        assert!(stats.int_extremes());

        stats.set_title(title);
        stats.set_id   (id   );

        assert!(stats.title() == title);
        assert!(stats.id()    == id   );

        for sample in min..=max {
            stats.record_i64(sample);
            events += 1;
        }

        let mean = (min + max) as f64 / 2.0;

        assert!(stats.min_i64() == min      );
        assert!(stats.max_i64() == max      );
        assert!(stats.mean()    == mean     );
        assert!(stats.count()   == events   );
        assert!(stats.class()   == "integer");

        let printer = stdout_printer();

        stats.print_opts(Some(printer), None);

        // Test that the log mode makes sense.

        let common_value = 128;

        for _i in 0..10000 {
            stats.record_i64(common_value);
            events += 1;
        }

        let expected = 7;

        println!("test_simple_stat:  log mode {}, expected {}",
            stats.log_mode(), expected);

        assert!(stats.log_mode() == expected);

        stats.clear();
        assert!(stats.min_i64() == i64::MAX);
        assert!(stats.max_i64() == i64::MIN);

        stats.record_i64(-1);
        assert!(stats.min_i64() == -1);
        assert!(stats.max_i64() == -1);

        stats.record_i64(1);
        assert!(stats.min_i64() == -1);
        assert!(stats.max_i64() ==  1);

        assert!(stats.count()   == 2  );
        assert!(stats.mean()    == 0.0);

        stats.clear();

        let sample = 4;

        for _i in 0..10 {
            stats.record_i64(sample);
        }

        let sample = sample as f64;

        assert!(stats.standard_deviation() == 0.0);

        assert!(stats.mean()     == sample);
        assert!(stats.variance() == 0.0   );
        assert!(stats.skewness() == 0.0   );
        assert!(stats.kurtosis() == 0.0   );
    }

    #[test]
    #[should_panic]
    fn test_record_f64() {
        let mut stats = RunningInteger::new("Panic Test", &None);

        stats.record_f64(1.0);
    }

    #[test]
    #[should_panic]
    fn test_record_event() {
        let mut stats = RunningInteger::new("Panic Test", &None);

        stats.record_event();
    }

    #[test]
    #[should_panic]
    fn test_record_event_report() {
        let mut stats = RunningInteger::new("Panic Test", &None);

        let _ = stats.record_event_report();
    }

    #[test]
    #[should_panic]
    fn test_record_time() {
        let mut stats = RunningInteger::new("Panic Test", &None);

        stats.record_time(1);
    }

    #[test]
    #[should_panic]
    fn test_record_interval() {
        let mut timer = continuing_box();
        let mut stats = RunningInteger::new("Panic Test", &None);

        stats.record_interval(&mut timer);
    }

    #[test]
    #[should_panic]
    fn test_to_float_histogram() {
        let stats = RunningInteger::new("Panic Test", &None);

        let _ = stats.to_float_histogram().unwrap();
    }

    fn test_equality() {
        let stats_1 = RunningInteger::new("Equality Test 1", &None);
        let stats_2 = RunningInteger::new("Equality Test 2", &None);
        let stats_3 = Counter::       new("Equality Test 3", &None);

        assert!( stats_1.equals(&stats_1));
        assert!(!stats_1.equals(&stats_2));
        assert!(!stats_1.equals(&stats_3));

        let mut stats = RunningInteger::new("Equality Test 1", &None);

        let any       = stats.as_any();
        let any_stats = any.downcast_ref::<RunningInteger>().unwrap();

        assert!(stats.equals(any_stats));

        // Now set_id() and id() to check equality.

        let expected  = 12034; // Something unlikely.

        stats.set_id(expected);

        let any       = stats.as_any_mut();
        let any_stats = any.downcast_ref::<RunningInteger>().unwrap();

        assert!(any_stats.id() == expected);
    }

    fn test_print_output() {
        let expected =
            [
                "Test Statistics",
                "    Count               1,000 ",
                "    Minimum                 1 byte",
                "    Maximum             1,000 bytes",
                "    Log Mode               10 ",
                "    Mode Value            768 bytes",
                "    Mean             +5.00500 e+2  bytes",
                "    Std Dev          +2.88819 e+2  bytes",
                "    Variance         +8.34166 e+4  ",
                "    Skewness         -4.16317 e-11 ",
                "    Kurtosis         -1.19999 e+0  ",
                "  Log Histogram",
                "  -----------------------",
                "    0:                 1                 1                 2                 4",
                "    4:                 8                16                32                64",
                "    8:               128               256               488                 0",
                ""
            ];

        let     printer    = Some(check_printer_box(&expected, true, false));
        let     title      = None;
        let     units      = bytes();
        let     histo_opts = None;
        let     print_opts = Some(PrintOpts { printer, title, units, histo_opts });

        let     name       = "Test Statistics";
        let mut stats      = RunningInteger::new(&name, &print_opts);
        let     samples    = 1000;

        for i in 1..=samples {
            stats.record_i64(i as i64);
        }

        stats.print();
    }

    #[test]
    fn run_tests() {
        test_simple_stat ();
        test_equality    ();
        test_print_output();
    }
}