rustfst 0.13.1

Library for constructing, combining, optimizing, and searching weighted finite-state transducers (FSTs).
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
use std::cmp::max;
use std::cmp::Ordering;
use std::collections::hash_map::Entry;
use std::collections::HashMap;
use std::collections::HashSet;
use std::marker::PhantomData;

use anyhow::Result;
use binary_heap_plus::BinaryHeap;
use stable_bst::TreeMap;

use crate::algorithms::encode::EncodeType;
use crate::algorithms::factor_weight::factor_iterators::GallicFactorLeft;
use crate::algorithms::factor_weight::{factor_weight, FactorWeightOptions, FactorWeightType};
use crate::algorithms::partition::Partition;
use crate::algorithms::queues::LifoQueue;
use crate::algorithms::tr_compares::ILabelCompare;
use crate::algorithms::tr_mappers::QuantizeMapper;
use crate::algorithms::tr_unique;
use crate::algorithms::weight_converters::{FromGallicConverter, ToGallicConverter};
use crate::algorithms::Queue;
use crate::algorithms::{
    connect,
    encode::{decode, encode},
    tr_map, tr_sort, weight_convert, ReweightType,
};
use crate::algorithms::{push_weights_with_config, reverse, PushWeightsConfig};
use crate::fst_impls::VectorFst;
use crate::fst_properties::FstProperties;
use crate::fst_traits::{AllocableFst, CoreFst, ExpandedFst, Fst, MutableFst};
use crate::semirings::{
    GallicWeightLeft, Semiring, SemiringProperties, WeaklyDivisibleSemiring, WeightQuantize,
};
use crate::EPS_LABEL;
use crate::KDELTA;
use crate::{Label, StateId, Trs};
use crate::{Tr, KSHORTESTDELTA};
use itertools::Itertools;
use std::cell::RefCell;
use std::rc::Rc;

#[derive(Clone, Copy, PartialOrd, PartialEq)]
pub struct MinimizeConfig {
    delta: f32,
    allow_nondet: bool,
}

impl MinimizeConfig {
    pub fn new(delta: f32, allow_nondet: bool) -> Self {
        Self {
            delta,
            allow_nondet,
        }
    }

    pub fn with_delta(self, delta: f32) -> Self {
        Self { delta, ..self }
    }

    pub fn with_allow_nondet(self, allow_nondet: bool) -> Self {
        Self {
            allow_nondet,
            ..self
        }
    }
}

impl Default for MinimizeConfig {
    fn default() -> Self {
        Self {
            delta: KSHORTESTDELTA,
            allow_nondet: false,
        }
    }
}

/// In place minimization of deterministic weighted automata and transducers,
/// and also non-deterministic ones if they use an idempotent semiring.
/// For transducers, the algorithm produces a compact factorization of the minimal transducer.
pub fn minimize<W, F>(ifst: &mut F) -> Result<()>
where
    F: MutableFst<W> + ExpandedFst<W> + AllocableFst<W>,
    W: WeaklyDivisibleSemiring + WeightQuantize,
    W::ReverseWeight: WeightQuantize,
{
    minimize_with_config(ifst, MinimizeConfig::default())
}

/// In place minimization of deterministic weighted automata and transducers,
/// and also non-deterministic ones if they use an idempotent semiring.
/// For transducers, the algorithm produces a compact factorization of the minimal transducer.
pub fn minimize_with_config<W, F>(ifst: &mut F, config: MinimizeConfig) -> Result<()>
where
    F: MutableFst<W> + ExpandedFst<W> + AllocableFst<W>,
    W: WeaklyDivisibleSemiring + WeightQuantize,
    W::ReverseWeight: WeightQuantize,
{
    let delta = config.delta;
    let allow_nondet = config.allow_nondet;

    let props = ifst.compute_and_update_properties(
        FstProperties::ACCEPTOR
            | FstProperties::I_DETERMINISTIC
            | FstProperties::WEIGHTED
            | FstProperties::UNWEIGHTED,
    )?;

    let allow_acyclic_minimization = if props.contains(FstProperties::I_DETERMINISTIC) {
        true
    } else {
        if !W::properties().contains(SemiringProperties::IDEMPOTENT) {
            bail!("Cannot minimize a non-deterministic FST over a non-idempotent semiring")
        } else if !allow_nondet {
            bail!("Refusing to minimize a non-deterministic FST with allow_nondet = false")
        }

        false
    };

    if !props.contains(FstProperties::ACCEPTOR) {
        // Weighted transducer
        let mut to_gallic = ToGallicConverter {};
        let mut gfst: VectorFst<GallicWeightLeft<W>> = weight_convert(ifst, &mut to_gallic)?;
        let push_weights_config = PushWeightsConfig::default().with_delta(delta);
        push_weights_with_config(
            &mut gfst,
            ReweightType::ReweightToInitial,
            push_weights_config,
        )?;

        let quantize_mapper = QuantizeMapper::new(delta);
        tr_map(&mut gfst, &quantize_mapper)?;

        let encode_table = encode(&mut gfst, EncodeType::EncodeWeightsAndLabels)?;

        acceptor_minimize(&mut gfst, allow_acyclic_minimization)?;

        decode(&mut gfst, encode_table)?;

        let factor_opts: FactorWeightOptions = FactorWeightOptions {
            delta: KDELTA,
            mode: FactorWeightType::FACTOR_FINAL_WEIGHTS | FactorWeightType::FACTOR_ARC_WEIGHTS,
            final_ilabel: 0,
            final_olabel: 0,
            increment_final_ilabel: false,
            increment_final_olabel: false,
        };

        let fwfst: VectorFst<_> =
            factor_weight::<_, VectorFst<GallicWeightLeft<W>>, _, _, GallicFactorLeft<W>>(
                &gfst,
                factor_opts,
            )?;

        let mut from_gallic = FromGallicConverter {
            superfinal_label: EPS_LABEL,
        };
        *ifst = weight_convert(&fwfst, &mut from_gallic)?;

        Ok(())
    } else if props.contains(FstProperties::WEIGHTED) {
        // Weighted acceptor
        let push_weights_config = PushWeightsConfig::default().with_delta(delta);
        push_weights_with_config(ifst, ReweightType::ReweightToInitial, push_weights_config)?;
        let quantize_mapper = QuantizeMapper::new(delta);
        tr_map(ifst, &quantize_mapper)?;
        let encode_table = encode(ifst, EncodeType::EncodeWeightsAndLabels)?;
        acceptor_minimize(ifst, allow_acyclic_minimization)?;
        decode(ifst, encode_table)
    } else {
        // Unweighted acceptor
        acceptor_minimize(ifst, allow_acyclic_minimization)
    }
}

/// In place minimization for weighted final state acceptor.
/// If `allow_acyclic_minimization` is true and the input is acyclic, then a specific
/// minimization is applied.
///
/// An error is returned if the input fst is not a weighted acceptor.
pub fn acceptor_minimize<W: Semiring, F: MutableFst<W> + ExpandedFst<W>>(
    ifst: &mut F,
    allow_acyclic_minimization: bool,
) -> Result<()> {
    let props = ifst.compute_and_update_properties(
        FstProperties::ACCEPTOR | FstProperties::UNWEIGHTED | FstProperties::ACYCLIC,
    )?;
    if !props.contains(FstProperties::ACCEPTOR | FstProperties::UNWEIGHTED) {
        bail!("FST is not an unweighted acceptor");
    }

    connect(ifst)?;

    if ifst.num_states() == 0 {
        return Ok(());
    }

    if allow_acyclic_minimization && props.contains(FstProperties::ACYCLIC) {
        // Acyclic minimization
        tr_sort(ifst, ILabelCompare {});
        let minimizer = AcyclicMinimizer::new(ifst)?;
        merge_states(minimizer.get_partition(), ifst)?;
    } else {
        let p = cyclic_minimize(ifst)?;
        merge_states(p, ifst)?;
    }

    tr_unique(ifst);

    Ok(())
}

fn merge_states<W: Semiring, F: MutableFst<W>>(
    partition: Rc<RefCell<Partition>>,
    fst: &mut F,
) -> Result<()> {
    let mut state_map = vec![None; partition.borrow().num_classes()];

    for (i, state_map_i) in state_map
        .iter_mut()
        .enumerate()
        .take(partition.borrow().num_classes())
    {
        *state_map_i = partition.borrow().iter(i).next();
    }

    for c in 0..partition.borrow().num_classes() {
        for s in partition.borrow().iter(c) {
            if s == state_map[c].unwrap() {
                let mut it_tr = fst.tr_iter_mut(s as StateId)?;
                for idx_tr in 0..it_tr.len() {
                    let tr = unsafe { it_tr.get_unchecked(idx_tr) };
                    let nextstate =
                        state_map[partition.borrow().get_class_id(tr.nextstate as usize)].unwrap();
                    unsafe { it_tr.set_nextstate_unchecked(idx_tr, nextstate as StateId) };
                }
            } else {
                for tr in fst
                    .get_trs(s as StateId)?
                    .trs()
                    .iter()
                    .cloned()
                    .map(|mut tr| {
                        tr.nextstate = state_map
                            [partition.borrow().get_class_id(tr.nextstate as usize)]
                        .unwrap() as StateId;
                        tr
                    })
                {
                    fst.add_tr(state_map[c].unwrap() as StateId, tr)?;
                }
            }
        }
    }

    fst.set_start(
        state_map[partition
            .borrow()
            .get_class_id(fst.start().unwrap() as usize) as usize]
            .unwrap() as StateId,
    )?;

    connect(fst)?;

    Ok(())
}

// Compute the height (distance) to final state
pub fn fst_depth<W: Semiring, F: Fst<W>>(
    fst: &F,
    state_id_cour: StateId,
    accessible_states: &mut HashSet<StateId>,
    fully_examined_states: &mut HashSet<StateId>,
    heights: &mut Vec<i32>,
) -> Result<()> {
    accessible_states.insert(state_id_cour);

    for _ in heights.len()..=(state_id_cour as usize) {
        heights.push(-1);
    }

    let mut height_cur_state = 0;
    for tr in fst.get_trs(state_id_cour)?.trs() {
        let nextstate = tr.nextstate;

        if !accessible_states.contains(&nextstate) {
            fst_depth(
                fst,
                nextstate,
                accessible_states,
                fully_examined_states,
                heights,
            )?;
        }

        height_cur_state = max(height_cur_state, 1 + heights[nextstate as usize]);
    }
    fully_examined_states.insert(state_id_cour);

    heights[state_id_cour as usize] = height_cur_state;

    Ok(())
}

struct AcyclicMinimizer {
    partition: Rc<RefCell<Partition>>,
}

impl AcyclicMinimizer {
    pub fn new<W: Semiring, F: MutableFst<W>>(fst: &mut F) -> Result<Self> {
        let mut c = Self {
            partition: Rc::new(RefCell::new(Partition::empty_new())),
        };
        c.initialize(fst)?;
        c.refine(fst);
        Ok(c)
    }

    fn initialize<W: Semiring, F: MutableFst<W>>(&mut self, fst: &mut F) -> Result<()> {
        let mut accessible_state = HashSet::new();
        let mut fully_examined_states = HashSet::new();
        let mut heights = Vec::new();
        fst_depth(
            fst,
            fst.start().unwrap(),
            &mut accessible_state,
            &mut fully_examined_states,
            &mut heights,
        )?;
        self.partition.borrow_mut().initialize(heights.len());
        self.partition
            .borrow_mut()
            .allocate_classes((heights.iter().max().unwrap() + 1) as usize);
        for (s, h) in heights.iter().enumerate() {
            self.partition.borrow_mut().add(s, *h as usize);
        }
        Ok(())
    }

    fn refine<W: Semiring, F: MutableFst<W>>(&mut self, fst: &mut F) {
        let state_cmp = StateComparator {
            fst,
            partition: Rc::clone(&self.partition),
            w: PhantomData,
        };

        let height = self.partition.borrow().num_classes();
        for h in 0..height {
            // We need here a binary search tree in order to order the states id and create a partition.
            // For now uses the crate `stable_bst` which is quite old but seems to do the job
            // TODO: Bench the performances of the implementation. Maybe re-write it.
            let mut equiv_classes =
                TreeMap::<StateId, StateId, _>::with_comparator(|a: &StateId, b: &StateId| {
                    state_cmp.compare(*a, *b).unwrap()
                });

            let it_partition: Vec<_> = self.partition.borrow().iter(h).collect();
            equiv_classes.insert(it_partition[0] as StateId, h as StateId);

            for e in it_partition.iter().skip(1) {
                equiv_classes.get_or_insert(*e as StateId, || {
                    self.partition.borrow_mut().add_class() as StateId
                });
            }

            for s in it_partition {
                let old_class = self.partition.borrow().get_class_id(s);
                let new_class = *equiv_classes.get(&(s as StateId)).unwrap();

                if old_class != (new_class as usize) {
                    self.partition
                        .borrow_mut()
                        .move_element(s, new_class as usize);
                }
            }
        }
    }

    pub fn get_partition(self) -> Rc<RefCell<Partition>> {
        self.partition
    }
}

struct StateComparator<'a, W: Semiring, F: MutableFst<W>> {
    fst: &'a F,
    partition: Rc<RefCell<Partition>>,
    w: PhantomData<W>,
}

impl<'a, W: Semiring, F: MutableFst<W>> StateComparator<'a, W, F> {
    fn do_compare(&self, x: StateId, y: StateId) -> Result<bool> {
        let xfinal = self.fst.final_weight(x)?.unwrap_or_else(W::zero);
        let yfinal = self.fst.final_weight(y)?.unwrap_or_else(W::zero);

        if xfinal < yfinal {
            return Ok(true);
        } else if xfinal > yfinal {
            return Ok(false);
        }

        if self.fst.num_trs(x)? < self.fst.num_trs(y)? {
            return Ok(true);
        }
        if self.fst.num_trs(x)? > self.fst.num_trs(y)? {
            return Ok(false);
        }

        let it_x_owner = self.fst.get_trs(x)?;
        let it_x = it_x_owner.trs().iter();
        let it_y_owner = self.fst.get_trs(y)?;
        let it_y = it_y_owner.trs().iter();

        for (arc1, arc2) in it_x.zip(it_y) {
            if arc1.ilabel < arc2.ilabel {
                return Ok(true);
            }
            if arc1.ilabel > arc2.ilabel {
                return Ok(false);
            }
            let id_1 = self
                .partition
                .borrow()
                .get_class_id(arc1.nextstate as usize);
            let id_2 = self
                .partition
                .borrow()
                .get_class_id(arc2.nextstate as usize);
            if id_1 < id_2 {
                return Ok(true);
            }
            if id_1 > id_2 {
                return Ok(false);
            }
        }
        Ok(false)
    }

    pub fn compare(&self, x: StateId, y: StateId) -> Result<Ordering> {
        if x == y {
            return Ok(Ordering::Equal);
        }

        let x_y = self.do_compare(x, y).unwrap();
        let y_x = self.do_compare(y, x).unwrap();

        if !(x_y) && !(y_x) {
            return Ok(Ordering::Equal);
        }

        if x_y {
            Ok(Ordering::Less)
        } else {
            Ok(Ordering::Greater)
        }
    }
}

fn pre_partition<W: Semiring, F: MutableFst<W>>(
    fst: &F,
    partition: &Rc<RefCell<Partition>>,
    queue: &mut LifoQueue,
) {
    let mut next_class: StateId = 0;
    let num_states = fst.num_states();

    let mut state_to_initial_class: Vec<StateId> = vec![0; num_states];
    {
        let mut hash_to_class_nonfinal = HashMap::<Vec<Label>, StateId>::new();
        let mut hash_to_class_final = HashMap::<Vec<Label>, StateId>::new();

        for (s, state_to_initial_class_s) in state_to_initial_class
            .iter_mut()
            .enumerate()
            .take(num_states)
        {
            let this_map = if unsafe { fst.is_final_unchecked(s as StateId) } {
                &mut hash_to_class_final
            } else {
                &mut hash_to_class_nonfinal
            };

            let ilabels = fst
                .get_trs(s as StateId)
                .unwrap()
                .trs()
                .iter()
                .map(|e| e.ilabel)
                .dedup()
                .collect_vec();

            match this_map.entry(ilabels) {
                Entry::Occupied(e) => {
                    *state_to_initial_class_s = *e.get();
                }
                Entry::Vacant(e) => {
                    e.insert(next_class);
                    *state_to_initial_class_s = next_class;
                    next_class += 1;
                }
            };
        }
    }

    partition.borrow_mut().allocate_classes(next_class as usize);
    for (s, c) in state_to_initial_class.iter().enumerate().take(num_states) {
        partition.borrow_mut().add(s, *c as usize);
    }

    for c in 0..next_class {
        queue.enqueue(c);
    }
}

fn cyclic_minimize<W: Semiring, F: MutableFst<W>>(fst: &mut F) -> Result<Rc<RefCell<Partition>>> {
    // Initialize
    let mut tr: VectorFst<W::ReverseWeight> = reverse(fst)?;
    tr_sort(&mut tr, ILabelCompare {});

    let partition = Rc::new(RefCell::new(Partition::new(tr.num_states() - 1)));
    let mut queue = LifoQueue::default();
    pre_partition(fst, &partition, &mut queue);

    let comp = TrIterCompare {};

    let mut aiter_queue = BinaryHeap::new_by(|v1, v2| {
        if comp.compare(v1, v2) {
            Ordering::Less
        } else {
            Ordering::Greater
        }
    });

    // Compute
    while let Some(c) = queue.head() {
        queue.dequeue();

        // Split
        for s in partition.borrow().iter(c as usize) {
            if tr.num_trs(s as StateId + 1)? > 0 {
                aiter_queue.push(TrsIterCollected {
                    idx: 0,
                    trs: tr.get_trs(s as StateId + 1)?,
                    w: PhantomData,
                });
            }
        }

        let mut prev_label = -1;
        while !aiter_queue.is_empty() {
            let mut aiter = aiter_queue.pop().unwrap();
            if aiter.done() {
                continue;
            }
            let tr = aiter.value().unwrap();
            let from_state = tr.nextstate - 1;
            let from_label = tr.ilabel;
            if prev_label != from_label as i32 {
                partition.borrow_mut().finalize_split(&mut Some(&mut queue));
            }
            let from_class = partition.borrow().get_class_id(from_state as usize);
            if partition.borrow().get_class_size(from_class) > 1 {
                partition.borrow_mut().split_on(from_state as usize);
            }
            prev_label = from_label as i32;
            aiter.next();
            if !aiter.done() {
                aiter_queue.push(aiter);
            }
        }

        partition.borrow_mut().finalize_split(&mut Some(&mut queue));
    }

    // Get Partition
    Ok(partition)
}

struct TrsIterCollected<W: Semiring, T: Trs<W>> {
    idx: usize,
    trs: T,
    w: PhantomData<W>,
}

impl<W: Semiring, T: Trs<W>> TrsIterCollected<W, T> {
    fn value(&self) -> Option<&Tr<W>> {
        self.trs.trs().get(self.idx)
    }

    fn done(&self) -> bool {
        self.idx >= self.trs.len()
    }

    fn next(&mut self) {
        self.idx += 1;
    }
}

#[derive(Debug, Clone)]
struct TrIterCompare {}

impl TrIterCompare {
    fn compare<W: Semiring, T: Trs<W>>(
        &self,
        x: &TrsIterCollected<W, T>,
        y: &TrsIterCollected<W, T>,
    ) -> bool
    where
        W: Semiring,
    {
        let xarc = x.value().unwrap();
        let yarc = y.value().unwrap();
        xarc.ilabel > yarc.ilabel
    }
}

#[cfg(test)]
mod tests {
    use crate::prelude::*;
    use ::proptest::prelude::*;
    use algorithms::determinize::*;
    use std::sync::Arc;

    #[test]
    fn test_minimize_issue_158() {
        let text_fst = r#"0	5	101	101	0
0	4	100	100	0
0	3	99	99	0
0	2	98	98	0
0	1	97	97	0
1	10	101	101	0
1	9	100	100	0
1	8	99	99	0
1	7	98	98	0
1	6	97	97	0
2	11	101	101	0
2	10	100	100	0
2	9	99	99	0
2	8	98	98	0
2	7	97	97	0
3	11	100	100	0
3	10	99	99	0
3	9	98	98	0
3	8	97	97	0
4	11	99	99	0
4	10	98	98	0
4	9	97	97	0
5	11	98	98	0
5	10	97	97	0
6	15	101	101	0
6	14	100	100	0
6	13	99	99	0
6	12	98	98	0
7	16	101	101	0
7	15	100	100	0
7	14	99	99	0
7	13	98	98	0
7	12	97	97	0
8	16	100	100	0
8	15	99	99	0
8	14	98	98	0
8	13	97	97	0
9	16	99	99	0
9	15	98	98	0
9	14	97	97	0
10	16	98	98	0
10	15	97	97	0
11	16	97	97	0
12	17	101	101	0
13	17	100	100	0
14	17	99	99	0
15	17	98	98	0
16	17	97	97	0
17	18	32	32	0
18	0
        "#;
        let path = fst_path![97, 98, 97, 100, 32];
        let mut fst: VectorFst<TropicalWeight> = VectorFst::from_text_string(text_fst).unwrap();
        let accept1 = check_path_in_fst(&fst, &path);
        minimize(&mut fst).unwrap();
        let accept2 = check_path_in_fst(&fst, &path);

        assert_eq!(accept1, accept2);
    }

    proptest! {
        #[test]
        fn test_proptest_minimize_timeout(mut fst in any::<VectorFst::<TropicalWeight>>()) {
            let config = MinimizeConfig::default().with_allow_nondet(true);
            minimize_with_config(&mut fst, config).unwrap();
        }
    }

    proptest! {
        #[test]
        #[ignore] // falls into the same infinite loop as the timeout test
        fn test_minimize_proptest(mut fst in any::<VectorFst::<TropicalWeight>>()) {
            let det:VectorFst<_> = determinize_with_config(&fst, DeterminizeConfig::default().with_det_type(DeterminizeType::DeterminizeNonFunctional)).unwrap();
            let min_config = MinimizeConfig::default().with_allow_nondet(true);
            minimize_with_config(&mut fst, min_config).unwrap();
            let det_config = DeterminizeConfig::default().with_det_type(DeterminizeType::DeterminizeNonFunctional);
            let min_det:VectorFst<_> = determinize_with_config(&fst, det_config).unwrap();
            prop_assert!(isomorphic(&det, &min_det).unwrap())
        }
    }

    proptest! {
        #[test]
        fn test_proptest_minimize_keeps_symts(mut fst in any::<VectorFst::<TropicalWeight>>()) {
            let symt = Arc::new(SymbolTable::new());
            fst.set_input_symbols(Arc::clone(&symt));
            fst.set_output_symbols(Arc::clone(&symt));

            minimize_with_config(&mut fst, MinimizeConfig::default().with_allow_nondet(true)).unwrap();

            assert!(fst.input_symbols().is_some());
            assert!(fst.output_symbols().is_some());
        }
    }
}