1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
use std::collections::HashMap;
use std::sync::Arc;
use num_integer::gcd;
use crate::common::FFTnum;
use crate::Fft;
use crate::algorithm::*;
use crate::algorithm::butterflies::*;
use crate::FftPlannerAvx;
use crate::math_utils::{ PrimeFactors, PrimeFactor };
const MIN_RADIX4_BITS: u32 = 5;
const MAX_RADIX4_BITS: u32 = 16;
const MAX_RADER_PRIME_FACTOR: usize = 23;
const MIN_BLUESTEIN_MIXED_RADIX_LEN: usize = 90;
pub struct FftPlanner<T: FFTnum> {
algorithm_cache: HashMap<usize, Arc<dyn Fft<T>>>,
inverse: bool,
avx_planner: Option<FftPlannerAvx<T>>,
}
impl<T: FFTnum> FftPlanner<T> {
pub fn new(inverse: bool) -> Self {
Self {
inverse: inverse,
algorithm_cache: HashMap::new(),
avx_planner: FftPlannerAvx::new(inverse).ok()
}
}
pub fn plan_fft(&mut self, len: usize) -> Arc<dyn Fft<T>> {
if let Some(avx_planner) = &mut self.avx_planner {
avx_planner.plan_fft(len)
} else if let Some(instance) = self.algorithm_cache.get(&len) {
Arc::clone(instance)
} else {
let instance = self.plan_new_fft_with_factors(len, PrimeFactors::compute(len));
self.algorithm_cache.insert(len, Arc::clone(&instance));
instance
}
}
fn plan_fft_with_factors(&mut self, len: usize, factors: PrimeFactors) -> Arc<dyn Fft<T>> {
if let Some(instance) = self.algorithm_cache.get(&len) {
Arc::clone(instance)
} else {
let instance = self.plan_new_fft_with_factors(len, factors);
self.algorithm_cache.insert(len, Arc::clone(&instance));
instance
}
}
fn plan_new_fft_with_factors(&mut self, len: usize, factors: PrimeFactors) -> Arc<dyn Fft<T>> {
if let Some(fft_instance) = self.plan_butterfly_algorithm(len) {
fft_instance
} else if factors.is_prime() {
self.plan_prime(len)
} else if len.trailing_zeros() <= MAX_RADIX4_BITS && len.trailing_zeros() >= MIN_RADIX4_BITS {
if len.is_power_of_two() {
Arc::new(Radix4::new(len, self.inverse))
} else {
let non_power_of_two = factors.remove_factors(PrimeFactor { value: 2, count: len.trailing_zeros()}).unwrap();
let power_of_two = PrimeFactors::compute(1 << len.trailing_zeros());
self.plan_mixed_radix(power_of_two, non_power_of_two)
}
} else {
let (left_factors, right_factors) = factors.partition_factors();
self.plan_mixed_radix(left_factors, right_factors)
}
}
fn plan_mixed_radix(&mut self, left_factors: PrimeFactors, right_factors: PrimeFactors) -> Arc<dyn Fft<T>> {
let left_len = left_factors.get_product();
let right_len = right_factors.get_product();
let left_fft = self.plan_fft_with_factors(left_len, left_factors);
let right_fft = self.plan_fft_with_factors(right_len, right_factors);
if left_len < 31 && right_len < 31 {
if gcd(left_len, right_len) == 1 {
Arc::new(GoodThomasAlgorithmSmall::new(left_fft, right_fft)) as Arc<dyn Fft<T>>
} else {
Arc::new(MixedRadixSmall::new(left_fft, right_fft)) as Arc<dyn Fft<T>>
}
} else {
Arc::new(MixedRadix::new(left_fft, right_fft)) as Arc<dyn Fft<T>>
}
}
fn plan_butterfly_algorithm(&mut self, len: usize) -> Option<Arc<dyn Fft<T>>>{
fn wrap_butterfly<N: FFTnum>(butterfly: impl Fft<N> + 'static) -> Option<Arc<dyn Fft<N>>> {
Some(Arc::new(butterfly) as Arc<dyn Fft<N>>)
}
match len {
0|1 => wrap_butterfly(DFT::new(len, self.inverse)),
2 => wrap_butterfly(Butterfly2::new(self.inverse)),
3 => wrap_butterfly(Butterfly3::new(self.inverse)),
4 => wrap_butterfly(Butterfly4::new(self.inverse)),
5 => wrap_butterfly(Butterfly5::new(self.inverse)),
6 => wrap_butterfly(Butterfly6::new(self.inverse)),
7 => wrap_butterfly(Butterfly7::new(self.inverse)),
8 => wrap_butterfly(Butterfly8::new(self.inverse)),
11 => wrap_butterfly(Butterfly11::new(self.inverse)),
13 => wrap_butterfly(Butterfly13::new(self.inverse)),
16 => wrap_butterfly(Butterfly16::new(self.inverse)),
17 => wrap_butterfly(Butterfly17::new(self.inverse)),
19 => wrap_butterfly(Butterfly19::new(self.inverse)),
23 => wrap_butterfly(Butterfly23::new(self.inverse)),
29 => wrap_butterfly(Butterfly29::new(self.inverse)),
31 => wrap_butterfly(Butterfly31::new(self.inverse)),
32 => wrap_butterfly(Butterfly32::new(self.inverse)),
_ => None,
}
}
fn plan_prime(&mut self, len: usize) -> Arc<dyn Fft<T>> {
let inner_fft_len_rader = len - 1;
let factors = crate::math_utils::distinct_prime_factors(inner_fft_len_rader as u64);
if factors.iter().any(|val| *val as usize > MAX_RADER_PRIME_FACTOR) {
let inner_fft_len_pow2 = (2 * len - 1).checked_next_power_of_two().unwrap();
let min_inner_len = 2 * len - 1;
let mixed_radix_len = 3*inner_fft_len_pow2/4;
let inner_fft = if mixed_radix_len >= min_inner_len && len >= MIN_BLUESTEIN_MIXED_RADIX_LEN {
let inner_factors = crate::math_utils::PrimeFactors::compute(mixed_radix_len);
self.plan_fft_with_factors(mixed_radix_len, inner_factors)
}
else {
Arc::new(Radix4::new(inner_fft_len_pow2, self.inverse))
};
Arc::new(BluesteinsAlgorithm::new(len, inner_fft)) as Arc<dyn Fft<T>>
}
else {
let factors = crate::math_utils::PrimeFactors::compute(inner_fft_len_rader);
let inner_fft = self.plan_fft_with_factors(inner_fft_len_rader, factors);
Arc::new(RadersAlgorithm::new(inner_fft)) as Arc<dyn Fft<T>>
}
}
}