1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
use std::sync::Arc;

use rustfft::num_complex::Complex;
use rustfft::{Fft, FftDirection, Length};

use crate::{array_utils::into_complex_mut, twiddles, RequiredScratch};
use crate::{Dct2, Dct3, DctNum, Dst2, Dst3, TransformType2And3};

/// DCT2, DST2, DCT3, and DST3 implementation that converts the problem into a FFT of the same size
///
/// ~~~
/// // Computes a O(NlogN) DCT2, DST2, DCT3, and DST3 of size 1234 by converting them to FFTs
/// use rustdct::{Dct2, Dst2, Dct3, Dst3};
/// use rustdct::algorithm::Type2And3ConvertToFft;
/// use rustdct::rustfft::FftPlanner;
///
/// let len = 1234;
/// let mut planner = FftPlanner::new();
/// let fft = planner.plan_fft_forward(len);
///
/// let dct = Type2And3ConvertToFft::new(fft);
///
/// let mut dct2_buffer = vec![0f32; len];
/// dct.process_dct2(&mut dct2_buffer);
///
/// let mut dst2_buffer = vec![0f32; len];
/// dct.process_dst2(&mut dst2_buffer);
///
/// let mut dct3_buffer = vec![0f32; len];
/// dct.process_dct3(&mut dct3_buffer);
///
/// let mut dst3_buffer = vec![0f32; len];
/// dct.process_dst3(&mut dst3_buffer);
/// ~~~
pub struct Type2And3ConvertToFft<T> {
    fft: Arc<dyn Fft<T>>,
    twiddles: Box<[Complex<T>]>,

    scratch_len: usize,
}

impl<T: DctNum> Type2And3ConvertToFft<T> {
    /// Creates a new DCT2, DST2, DCT3, and DST3 context that will process signals of length `inner_fft.len()`.
    pub fn new(inner_fft: Arc<dyn Fft<T>>) -> Self {
        assert_eq!(
            inner_fft.fft_direction(),
            FftDirection::Forward,
            "The 'DCT type 2 via FFT' algorithm requires a forward FFT, but an inverse FFT was provided"
        );

        let len = inner_fft.len();

        let twiddles: Vec<Complex<T>> = (0..len)
            .map(|i| twiddles::single_twiddle(i, len * 4))
            .collect();

        let scratch_len = 2 * (len + inner_fft.get_inplace_scratch_len());

        Self {
            fft: inner_fft,
            twiddles: twiddles.into_boxed_slice(),
            scratch_len,
        }
    }
}

impl<T: DctNum> Dct2<T> for Type2And3ConvertToFft<T> {
    fn process_dct2_with_scratch(&self, buffer: &mut [T], scratch: &mut [T]) {
        assert_eq!(buffer.len(), self.len());
        assert_eq!(scratch.len(), self.get_scratch_len());

        let len = self.len();

        let complex_scratch = into_complex_mut(scratch);
        let (fft_buffer, fft_scratch) = complex_scratch.split_at_mut(len);

        // the first half of the array will be the even elements, in order
        let even_end = (buffer.len() + 1) / 2;
        for i in 0..even_end {
            fft_buffer[i] = Complex::from(buffer[i * 2]);
        }

        // the second half is the odd elements, in reverse order
        let odd_end = buffer.len() - 1 - buffer.len() % 2;
        for i in 0..buffer.len() / 2 {
            fft_buffer[even_end + i] = Complex::from(buffer[odd_end - 2 * i]);
        }

        // run the fft
        self.fft.process_with_scratch(fft_buffer, fft_scratch);

        // apply a correction factor to the result
        for ((fft_entry, correction_entry), spectrum_entry) in fft_buffer
            .iter()
            .zip(self.twiddles.iter())
            .zip(buffer.iter_mut())
        {
            *spectrum_entry = (fft_entry * correction_entry).re;
        }
    }
}
impl<T: DctNum> Dst2<T> for Type2And3ConvertToFft<T> {
    fn process_dst2_with_scratch(&self, buffer: &mut [T], scratch: &mut [T]) {
        assert_eq!(buffer.len(), self.len());
        assert_eq!(scratch.len(), self.get_scratch_len());

        let len = self.len();

        let complex_scratch = into_complex_mut(scratch);
        let (fft_buffer, fft_scratch) = complex_scratch.split_at_mut(len);

        // the first half of the array will be the even elements, in order
        let even_end = (buffer.len() + 1) / 2;
        for i in 0..even_end {
            fft_buffer[i] = Complex::from(buffer[i * 2]);
        }

        // the second half is the odd elements, in reverse order and negated
        let odd_end = buffer.len() - 1 - buffer.len() % 2;
        for i in 0..buffer.len() / 2 {
            fft_buffer[even_end + i] = Complex::from(-buffer[odd_end - 2 * i]);
        }

        // run the fft
        self.fft.process_with_scratch(fft_buffer, fft_scratch);

        // apply a correction factor to the result, and put it in reversed order in the output buffer
        for ((fft_entry, correction_entry), spectrum_entry) in fft_buffer
            .iter()
            .zip(self.twiddles.iter())
            .zip(buffer.iter_mut().rev())
        {
            *spectrum_entry = (fft_entry * correction_entry).re;
        }
    }
}
impl<T: DctNum> Dct3<T> for Type2And3ConvertToFft<T> {
    fn process_dct3_with_scratch(&self, buffer: &mut [T], scratch: &mut [T]) {
        assert_eq!(buffer.len(), self.len());
        assert_eq!(scratch.len(), self.get_scratch_len());

        let len = self.len();

        let complex_scratch = into_complex_mut(scratch);
        let (fft_buffer, fft_scratch) = complex_scratch.split_at_mut(len);

        // compute the FFT buffer based on the correction factors
        fft_buffer[0] = Complex::from(buffer[0] * T::half());

        for (i, (fft_input_element, twiddle)) in fft_buffer
            .iter_mut()
            .zip(self.twiddles.iter())
            .enumerate()
            .skip(1)
        {
            let c = Complex {
                re: buffer[i],
                im: buffer[buffer.len() - i],
            };
            *fft_input_element = c * twiddle * T::half();
        }

        // run the fft
        self.fft.process_with_scratch(fft_buffer, fft_scratch);

        // copy the first half of the fft output into the even elements of the buffer
        let even_end = (buffer.len() + 1) / 2;
        for i in 0..even_end {
            buffer[i * 2] = fft_buffer[i].re;
        }

        // copy the second half of the fft buffer into the odd elements, reversed
        let odd_end = buffer.len() - 1 - buffer.len() % 2;
        for i in 0..buffer.len() / 2 {
            buffer[odd_end - 2 * i] = fft_buffer[i + even_end].re;
        }
    }
}
impl<T: DctNum> Dst3<T> for Type2And3ConvertToFft<T> {
    fn process_dst3_with_scratch(&self, buffer: &mut [T], scratch: &mut [T]) {
        assert_eq!(buffer.len(), self.len());
        assert_eq!(scratch.len(), self.get_scratch_len());

        let len = self.len();

        let complex_scratch = into_complex_mut(scratch);
        let (fft_buffer, fft_scratch) = complex_scratch.split_at_mut(len);

        // compute the FFT buffer based on the correction factors
        fft_buffer[0] = Complex::from(buffer[buffer.len() - 1] * T::half());

        for (i, (fft_input_element, twiddle)) in fft_buffer
            .iter_mut()
            .zip(self.twiddles.iter())
            .enumerate()
            .skip(1)
        {
            let c = Complex {
                re: buffer[buffer.len() - i - 1],
                im: buffer[i - 1],
            };
            *fft_input_element = c * twiddle * T::half();
        }

        // run the fft
        self.fft.process_with_scratch(fft_buffer, fft_scratch);

        // copy the first half of the fft output into the even elements of the output
        let even_end = (self.len() + 1) / 2;
        for i in 0..even_end {
            buffer[i * 2] = fft_buffer[i].re;
        }

        // copy the second half of the fft output into the odd elements, reversed
        let odd_end = self.len() - 1 - self.len() % 2;
        for i in 0..self.len() / 2 {
            buffer[odd_end - 2 * i] = -fft_buffer[i + even_end].re;
        }
    }
}
impl<T: DctNum> TransformType2And3<T> for Type2And3ConvertToFft<T> {}
impl<T> Length for Type2And3ConvertToFft<T> {
    fn len(&self) -> usize {
        self.twiddles.len()
    }
}
impl<T: DctNum> RequiredScratch for Type2And3ConvertToFft<T> {
    fn get_scratch_len(&self) -> usize {
        self.scratch_len
    }
}

#[cfg(test)]
mod test {
    use super::*;
    use crate::algorithm::Type2And3Naive;

    use crate::test_utils::{compare_float_vectors, random_signal};
    use rustfft::FftPlanner;

    /// Verify that our fast implementation of the DCT2 gives the same output as the naive version, for many different inputs
    #[test]
    fn test_dct2_via_fft() {
        for size in 2..20 {
            let mut expected_buffer = random_signal(size);
            let mut actual_buffer = expected_buffer.clone();

            let naive_dct = Type2And3Naive::new(size);
            naive_dct.process_dct2(&mut expected_buffer);

            let mut fft_planner = FftPlanner::new();
            let dct = Type2And3ConvertToFft::new(fft_planner.plan_fft_forward(size));
            dct.process_dct2(&mut actual_buffer);

            println!("{}", size);
            println!("expected: {:?}", expected_buffer);
            println!("actual: {:?}", actual_buffer);

            assert!(
                compare_float_vectors(&actual_buffer, &expected_buffer),
                "len = {}",
                size
            );
        }
    }

    /// Verify that our fast implementation of the DST2 gives the same output as the naive version, for many different inputs
    #[test]
    fn test_dst2_via_fft() {
        for size in 2..20 {
            let mut expected_buffer = random_signal(size);
            let mut actual_buffer = expected_buffer.clone();

            let naive_dst = Type2And3Naive::new(size);
            naive_dst.process_dst2(&mut expected_buffer);

            let mut fft_planner = FftPlanner::new();
            let dst = Type2And3ConvertToFft::new(fft_planner.plan_fft_forward(size));
            dst.process_dst2(&mut actual_buffer);

            println!("{}", size);
            println!("expected: {:?}", expected_buffer);
            println!("actual: {:?}", actual_buffer);

            assert!(
                compare_float_vectors(&actual_buffer, &expected_buffer),
                "len = {}",
                size
            );
        }
    }

    /// Verify that our fast implementation of the DCT3 gives the same output as the naive version, for many different inputs
    #[test]
    fn test_dct3_via_fft() {
        for size in 2..20 {
            let mut expected_buffer = random_signal(size);
            let mut actual_buffer = expected_buffer.clone();

            let naive_dct = Type2And3Naive::new(size);
            naive_dct.process_dct3(&mut expected_buffer);

            let mut fft_planner = FftPlanner::new();
            let dct = Type2And3ConvertToFft::new(fft_planner.plan_fft_forward(size));
            dct.process_dct3(&mut actual_buffer);

            println!("{}", size);
            println!("expected: {:?}", expected_buffer);
            println!("actual: {:?}", actual_buffer);

            assert!(
                compare_float_vectors(&actual_buffer, &expected_buffer),
                "len = {}",
                size
            );
        }
    }

    /// Verify that our fast implementation of the DST3 gives the same output as the naive version, for many different inputs
    #[test]
    fn test_dst3_via_fft() {
        for size in 2..20 {
            let mut expected_buffer = random_signal(size);
            let mut actual_buffer = expected_buffer.clone();

            let naive_dst = Type2And3Naive::new(size);
            naive_dst.process_dst3(&mut expected_buffer);

            let mut fft_planner = FftPlanner::new();
            let dst = Type2And3ConvertToFft::new(fft_planner.plan_fft_forward(size));
            dst.process_dst3(&mut actual_buffer);

            println!("{}", size);
            println!("expected: {:?}", expected_buffer);
            println!("actual: {:?}", actual_buffer);

            assert!(
                compare_float_vectors(&actual_buffer, &expected_buffer),
                "len = {}",
                size
            );
        }
    }
}